An Introduction to Optimal Designs for Social and Biomedical Research

Inhaltsverzeichnis

Preface . Acknowledgements. 1 Introduction to designs . 1.1 Introduction. 1.2 Stages of the research process. 1.3 Research design. 1.4 Types of research designs. 1.5 Requirements for a 'good' design. 1.6 Ethical aspects of design choice. 1.7 Exact versus approximate designs. 1.8 Examples. 1.9 Summary. 2 Designs for simple linear regression . 2.1 Design problem for a linear model. 2.2 Designs for radiation-dosage example. 2.3 Relative efficiency and sample size. 2.4 Simultaneous inference. 2.5 Optimality criteria. 2.6 Relative efficiency. 2.7 Matrix formulation of designs for linear regression. 2.8 Summary. 3 Designs for multiple linear regression analysis . 3.1 Design problem for multiple linear regression. 3.2 Designs for vocabulary-growth study. 3.3 Relative efficiency and sample size. 3.4 Simultaneous inference. 3.5 Optimality criteria for a subset of parameters. 3.6 Relative efficiency. 3.7 Designs for polynomial regression model. 3.8 The Poggendorff and Ponzo illusion study. 3.9 Uncertainty about best fitting regression models. 3.10 Matrix notation of designs for multiple regression models. 3.11 Summary. 4 Designs for analysis of variance models . 4.1 A typical design problem for an analysis of variance model. 4.2 Estimation of parameters and efficiency. 4.3 Simultaneous inference and optimality criteria. 4.4 Designs for groups under stress study. 4.5 Specific hypotheses and contrasts. 4.6 Designs for the composite faces study. 4.7 Balanced designs versus unbalanced designs. 4.8 Matrix notation for Groups under Stress study. 4.9 Summary. 5 Designs for logistic regression models . 5.1 Design problem for logistic regression. 5.2 The design. 5.3 The logistic regression model. 5.4 Approaches to deal with local optimality. 5.5 Designs for calibration of item parameters in item response theory models. 5.6 Matrix formulation of designs for logistic regression. 5.7 Summary. 6 Designs for multilevel models . 6.1 Design problem for multilevel models. 6.2 The multilevel regression model. 6.3 Cluster versus subject randomization. 6.4 Cost function. 6.5 Example: Nursing home study. 6.6 Optimal design and power. 6.7 Design effect in multilevel surveys. 6.8 Matrix formulation of the multilevel model . 6.9 Summary. 7 Longitudinal designs for repeated measurement models . 7.1 Design problem for repeated measurements. 7.2 The design. 7.3 Analysis techniques for repeated measures. 7.4 The linear mixed effects model for repeated measurement data. 7.5 Variance-covariance structures. 7.6 Estimation of parameters and efficiency. 7.7 Bone mineral density example. 7.8 Cost function. 7.9 D-optimal designs for linear mixed effects models with autocorrelated errors. 7.10 Miscellanea. 7. 11 Matrix formulation of the linear mixed effects model. 7. 12 Summary. 8 Two-treatment crossover designs . 8.1 Design problem for crossover studies. 8.2 The design. 8.3 Confounding treatment effects with nuisance effects. 8.4 The linear model for crossover designs. 8.5 Estimation of parameters and efficiency. 8.6 Cost and efficiency of the crossover design. 8.7 Optimal crossover designs for two treatments. 8.8 Matrix formulation of the mixed model for crossover designs. 8.9 Summary. 9 Alternative optimal designs for linear models . 9.1 Introduction. 9.2 Information matrix. 9.3 D A - or Ds-optimal designs. 9.4 Extrapolation optimal design. 9.5 L-optimal designs. 9.6 Bayesian optimal designs. 9.7 Minimax optimal design. 9.8 Multiple-objective optimal designs. 9.9 Summary. 10 Optimal designs for nonlinear models . 10.1 Introduction. 10.2 Linear models versus nonlinear models. 10.3 Design issues for nonlinear models. 10.4 Alternative optimal designs with examples. 10.5 Bayesian optimal designs. 10.6 Minimax optimal design. 10.7 Multiple-objective optimal designs. 10.8 Optimal design for model discrimination. 10.9 Summary. 11 Resources for the construction of optimal designs . 11.1 Introduction. 11.2 Sequential construction of optimal designs. 11.3 Exchange of design points. 11.4 Other algorithms. 11.5 Optimal design software. 11.6 A web site for finding optimal designs. 11.7 Summary. References . Author Index. Subject Index.

An Introduction to Optimal Designs for Social and Biomedical Research

An Introduction, Statistics in Practice

Buch (Gebundene Ausgabe, Englisch)

108,99 €

inkl. gesetzl. MwSt.

An Introduction to Optimal Designs for Social and Biomedical Research

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab 108,99 €
eBook

eBook

ab 74,99 €

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

01.07.2009

Verlag

John Wiley & Sons Inc

Seitenzahl

346

Maße (L/B/H)

23,1/15,7/2,3 cm

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

01.07.2009

Verlag

John Wiley & Sons Inc

Seitenzahl

346

Maße (L/B/H)

23,1/15,7/2,3 cm

Gewicht

612 g

Auflage

1. Auflage

Sprache

Englisch

ISBN

978-0-470-69450-3

Weitere Bände von Statistics in Practice

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

Die Leseprobe wird geladen.
  • An Introduction to Optimal Designs for Social and Biomedical Research
  • Preface . Acknowledgements. 1 Introduction to designs . 1.1 Introduction. 1.2 Stages of the research process. 1.3 Research design. 1.4 Types of research designs. 1.5 Requirements for a 'good' design. 1.6 Ethical aspects of design choice. 1.7 Exact versus approximate designs. 1.8 Examples. 1.9 Summary. 2 Designs for simple linear regression . 2.1 Design problem for a linear model. 2.2 Designs for radiation-dosage example. 2.3 Relative efficiency and sample size. 2.4 Simultaneous inference. 2.5 Optimality criteria. 2.6 Relative efficiency. 2.7 Matrix formulation of designs for linear regression. 2.8 Summary. 3 Designs for multiple linear regression analysis . 3.1 Design problem for multiple linear regression. 3.2 Designs for vocabulary-growth study. 3.3 Relative efficiency and sample size. 3.4 Simultaneous inference. 3.5 Optimality criteria for a subset of parameters. 3.6 Relative efficiency. 3.7 Designs for polynomial regression model. 3.8 The Poggendorff and Ponzo illusion study. 3.9 Uncertainty about best fitting regression models. 3.10 Matrix notation of designs for multiple regression models. 3.11 Summary. 4 Designs for analysis of variance models . 4.1 A typical design problem for an analysis of variance model. 4.2 Estimation of parameters and efficiency. 4.3 Simultaneous inference and optimality criteria. 4.4 Designs for groups under stress study. 4.5 Specific hypotheses and contrasts. 4.6 Designs for the composite faces study. 4.7 Balanced designs versus unbalanced designs. 4.8 Matrix notation for Groups under Stress study. 4.9 Summary. 5 Designs for logistic regression models . 5.1 Design problem for logistic regression. 5.2 The design. 5.3 The logistic regression model. 5.4 Approaches to deal with local optimality. 5.5 Designs for calibration of item parameters in item response theory models. 5.6 Matrix formulation of designs for logistic regression. 5.7 Summary. 6 Designs for multilevel models . 6.1 Design problem for multilevel models. 6.2 The multilevel regression model. 6.3 Cluster versus subject randomization. 6.4 Cost function. 6.5 Example: Nursing home study. 6.6 Optimal design and power. 6.7 Design effect in multilevel surveys. 6.8 Matrix formulation of the multilevel model . 6.9 Summary. 7 Longitudinal designs for repeated measurement models . 7.1 Design problem for repeated measurements. 7.2 The design. 7.3 Analysis techniques for repeated measures. 7.4 The linear mixed effects model for repeated measurement data. 7.5 Variance-covariance structures. 7.6 Estimation of parameters and efficiency. 7.7 Bone mineral density example. 7.8 Cost function. 7.9 D-optimal designs for linear mixed effects models with autocorrelated errors. 7.10 Miscellanea. 7. 11 Matrix formulation of the linear mixed effects model. 7. 12 Summary. 8 Two-treatment crossover designs . 8.1 Design problem for crossover studies. 8.2 The design. 8.3 Confounding treatment effects with nuisance effects. 8.4 The linear model for crossover designs. 8.5 Estimation of parameters and efficiency. 8.6 Cost and efficiency of the crossover design. 8.7 Optimal crossover designs for two treatments. 8.8 Matrix formulation of the mixed model for crossover designs. 8.9 Summary. 9 Alternative optimal designs for linear models . 9.1 Introduction. 9.2 Information matrix. 9.3 D A - or Ds-optimal designs. 9.4 Extrapolation optimal design. 9.5 L-optimal designs. 9.6 Bayesian optimal designs. 9.7 Minimax optimal design. 9.8 Multiple-objective optimal designs. 9.9 Summary. 10 Optimal designs for nonlinear models . 10.1 Introduction. 10.2 Linear models versus nonlinear models. 10.3 Design issues for nonlinear models. 10.4 Alternative optimal designs with examples. 10.5 Bayesian optimal designs. 10.6 Minimax optimal design. 10.7 Multiple-objective optimal designs. 10.8 Optimal design for model discrimination. 10.9 Summary. 11 Resources for the construction of optimal designs . 11.1 Introduction. 11.2 Sequential construction of optimal designs. 11.3 Exchange of design points. 11.4 Other algorithms. 11.5 Optimal design software. 11.6 A web site for finding optimal designs. 11.7 Summary. References . Author Index. Subject Index.