• Topology and Maps
  • Topology and Maps
Band 5

Topology and Maps

Aus der Reihe

Topology and Maps

Ebenfalls verfügbar als:

Taschenbuch

Taschenbuch

ab 49,99 €
eBook

eBook

ab 53,49 €

49,99 €

inkl. MwSt, Versandkostenfrei

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

27.12.2012

Herausgeber

T. Husain

Verlag

Springer Us

Seitenzahl

337

Maße (L/B/H)

22,9/15,2/2 cm

Gewicht

522 g

Auflage

Softcover reprint of the original 1st edition 1977

Sprache

Englisch

ISBN

978-1-4615-8800-9

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

27.12.2012

Herausgeber

T. Husain

Verlag

Springer Us

Seitenzahl

337

Maße (L/B/H)

22,9/15,2/2 cm

Gewicht

522 g

Auflage

Softcover reprint of the original 1st edition 1977

Sprache

Englisch

ISBN

978-1-4615-8800-9

Herstelleradresse

Springer-Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg
DE

Email: ProductSafety@springernature.com

Weitere Bände von Mathematical Concepts and Methods in Science and Engineering

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Topology and Maps
  • Topology and Maps
  • I. Preliminaries.- 1. Fundamental Notions of Set Theory.- 2. Relations and Mappings.- 3. Partial and Linear Orderings; Cartesian Products.- 4. Lattices.- 5. Algebraic Structures.- 6. Categories and Functors.- II. Topological Spaces.- 7. Open and Closed Sets.- 8. Topologies and Neighborhoods.- 9. Limit Points.- 10. Bases and Subbases.- 11. First and Second Countable Spaces.- 12. Metric Spaces.- 13. Nets.- 14. Filters.- 15. Topologies Defined by Other Topologies.- Examples and Exercises.- III. Continuity and Separation Axioms.- 16. Continuous and Open Mappings.- 17. Topologies Defined by Mappings.- 18. Separation Axioms.- 19. Continuous Functions on Normal Spaces.- Examples and Exercises.- IV. Methods for Constructing New Topological Spaces from Old.- 20. Subspaces.- 21. Topological Sums.- 22. Topological Products.- 23. Quotient Topology and Quotient Spaces.- 24. Projective and Inductive Limits.- Examples and Exercises.- V. Uniform Spaces.- 25. Uniformities and Topologies.- 26. Uniformity and Separation Axioms.- 27. Uniformizable Spaces.- 28. Uniform Continuity and Uniform Spaces.- 29. Completeness in Uniform Spaces.- 30. Completeness, Compactness, and Completions.- 31. Topological Groups and Topological Vector Spaces.- 32. Metrizability.- 33. Fixed Points.- 34. Proximity Spaces.- Examples and Exercises.- VI. Compact Spaces and Various Other Types of Spaces.- 35. Compact Spaces.- 36. Countable Compactness and Sequential Compactness.- 37. Compactness in Metric Spaces.- 38. Locally Compact Spaces.- 39. MB-Spaces.- 40. k-Spaces and kr-Spaces.- 41. Baire Spaces.- 42. Pseudocompact Spaces.- 43. Paracompact Spaces.- 44. Compactifications.- Examples and Exercises.- VII. Generalizations of Continuous Maps.- 45. Almost Continuous Maps.- 46. Closed Graphs.- 47. Almost Continuity and Closed Graphs.- 48. Graphically Continuous Maps.- 49. Nearly Continuous and w-Continuous Maps.- 50. Semicontinuous Maps.- 51. Approximately Continuous Functions.- 52. Applications of Almost Continuity.- Examples and Exercises.- VIE. Function Spaces.- 53. The Set of All Maps.- 54. Compact-Open Topology and the Topology of Joint Continuity.- 55. Subsets of FE with Induced Topologies.- 56. The Uniformities on FE.- 57. 𝔖-Uniformities and 𝔖-Topologies.- 58. Equicontinuous Maps.- 59. Equicontinuity and Metric Spaces.- 60. Sequential Convergence in Function Spaces.- Examples and Exercises.- IX. Extensions of Mappings.- 61. Extensions of Maps on Completely Regular and Metric Spaces.- 62. The Hahn-Banach Extension Theorem.- 63. A General Extension Theorem.- Examples and Exercises.- X. C(X) Spaces.- 64. Stone-Weierstrass Theorem.- 65. Embeddings of X into C(X).- 66. C(X) Spaces for Compact Spaces X.- 67. Separability in C(X).- 68. C(X) Spaces for Completely Regular Spaces X.- 69. Characterization of Banach and Fréchet Spaces C(X).- 70. Characterization of Locally Convex Spaces C(X).- Epilogue.- Examples and Exercises.