• Guide to Simulation and Modeling for Biosciences
  • Guide to Simulation and Modeling for Biosciences

Inhaltsverzeichnis

Foundations of Modeling

Agent-based Modeling

ABMs using Repast Simphony

Differential Equations

Mathematical Tools

Other Stochastic Methods and Prism

Simulating Biochemical Systems

Biochemical Models Beyond the Perfect Mixing Assumption

Reference Material

Guide to Simulation and Modeling for Biosciences

Buch (Gebundene Ausgabe, Englisch)

66,99 € inkl. gesetzl. MwSt.

Guide to Simulation and Modeling for Biosciences

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab 66,99 €
Taschenbuch

Taschenbuch

ab 58,99 €
eBook

eBook

ab 64,19 €

Beschreibung


This accessible text/reference presents a detailed introduction to the use of a wide range of software tools and modeling environments for use in the biosciences, as well as some of the fundamental mathematical background. The practical constraints and difficulties presented by each modeling technique are described in detail, enabling the researcher to determine quickly which software package would be most useful for their particular problem.

This Guide to Simulation and Modeling for Biosciences is a fully updated and enhanced revision of the authors’ earlier Introduction to Modeling for Biosciences. Written with the particular needs of the novice modeler in mind, this unique and helpful work guides the reader through realistic and concrete modeling projects, highlighting and commenting on the process of abstracting the real system into a model.

Topics and features: introduces a basic array of techniques to formulate models of biological systems, and to solve them; discusses agent-based models, stochastic modeling techniques, differential equations, spatial simulations, and Gillespie’s stochastic simulation algorithm; provides exercises to help the reader sharpen their understanding of the topics; describes such useful tools as the Maxima algebra system, the PRISM model checker, and the modeling environments Repast Simphony and Smoldyn; contains appendices on rules of differentiation and integration, Maxima and PRISM notation, and some additional mathematical concepts; offers supplementary material at an associated website, including source code for many of the example models discussed in the book.

Students and active researchers in the biosciences will benefit from the discussions of the high-quality, tried-and-tested modeling tools described in the book, as well as the thorough descriptions and examples.


David J. Barnes is a senior lecturer in computer science at the University of Kent, UK, with a strong background in the teaching of programming and the implementation of computational models of biological systems.

Dominique Chu is a senior lecturer in computer science at the University of Kent, UK. He is an expert in mathematical and computational modeling of biological systems, with years of experience in these fields.

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

11.09.2015

Verlag

Springer London

Seitenzahl

339

Maße (L/B/H)

24,1/16/2,4 cm

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

11.09.2015

Verlag

Springer London

Seitenzahl

339

Maße (L/B/H)

24,1/16/2,4 cm

Gewicht

702 g

Auflage

2. Auflage

Reihe

Simulation Foundations, Methods and Applications

Sprache

Englisch

ISBN

978-1-4471-6761-7

Das meinen unsere Kund*innen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Kund*innenkonto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kund*innen meinen

0.0

0 Bewertungen filtern

  • Guide to Simulation and Modeling for Biosciences
  • Guide to Simulation and Modeling for Biosciences
  • Foundations of Modeling

    Agent-based Modeling

    ABMs using Repast Simphony

    Differential Equations

    Mathematical Tools

    Other Stochastic Methods and Prism

    Simulating Biochemical Systems

    Biochemical Models Beyond the Perfect Mixing Assumption

    Reference Material