Grundwissen Induktive Statistik

Inhaltsverzeichnis

1 Artifizielle Zufallsgeneratoren 15
1.1 Einleitung 16
1.2 Zufallsvariablen 16
1.2.1 Ausgangspunkt: Gleichverteilung 16
1.2.2 Konstruktion beliebiger Verteilungen 17
1.2.3 Wahrscheinlichkeiten und Häufigkeiten 18
1.2.4 Charakterisierungen von Verteilungen 19
1.2.5 Funktionen von Zufallsvariablen 19
1.2.6 Unendliche Wertebereiche 19
1.3 Eine Erweiterung 20
1.3.1 Dichtefunktionen 20
1.3.2 Eine stetige Gleichverteilung 21
1.3.3 Charakterisierungen stetiger Verteilungen 22
1.3.4 Die Normalverteilung 22
1.3.5 Funktionen stetiger Zufallsvariablen 23
1.4 Algorithmische Zufallsgeneratoren 24
1.4.1 Simulation eines Würfels 24
1.4.2 Die Inversionsmethode 25
1.5 Aufgaben 27
1.6 R-Code 29
2 Schätzen von Verteilungsparametern 31
2.1 Einleitung 32
2.2 Unabhängige Wiederholungen 32
2.2.1 Stichprobenvariablen 32
2.2.2 Stichprobenfunktionen 33
2.3 Die Maximum-Likelihood-Methode 34
2.3.1 Likelihoodfunktionen 34
2.3.2 Ein einziger Parameter 35
2.3.3 Mehrere Parameter 36
2.4 Stetige Zufallsvariablen 38
2.4.1 Likelihoodfunktionen 38
2.4.2 Parameter der Normalverteilung 39
2.5 Annahmen über Verteilungen 40
2.6 Aufgaben 43
2.7 R-Code 44
3 Schätzfunktionen und Konfidenzintervalle 47
3.1 Einleitung 48
3.2 Schätzfunktionen 48
3.2.1 Definition und Beispiele 48
3.2.2 Erwartungstreue Schätzfunktionen 49
3.3 Die Binomialverteilung 49
3.4 Verteilungen von Schätzfunktionen 51
3.4.1 Die Schätzfunktion für 52
3.4.2 Die Schätzfunktion für 53
3.5 Konfidenzintervalle 55
3.6 Formelanhang 58
3.7 Aufgaben 60
3.8 R-Code 61
4 Testen von Hypothesen 63
4.1 Einleitung 64
4.2 Signifikanztests 64
4.2.1 Einfache Hypothesen 64
4.2.2 Festlegung des kritischen Bereichs 65
4.2.3 Fehler erster und zweiter Art 65
4.2.4 Zusammengesetzte Hypothesen 67
4.2.5 Signifikanztests und Konfidenzintervalle 68
4.2.6 Werden Nullhypothesen bestätigt? 69
4.3 Likelihood-Ratio-Tests 69
4.3.1 Schematische Darstellung 69
4.3.2 Ist der Würfel fair? 71
4.3.3 Bedeutung des Stichprobenumfangs 73
4.3.4 Zusammengesetzte Hypothesen 74
4.4 Aufgaben 76
4.5 R-Code 77
5 Stichproben aus realen Gesamtheiten 79
5.1 Einleitung 80
5.2 Zufallsstichproben 81
5.2.1 Stichprobendesign und Stichproben 81
5.2.2 Inklusions- und Ziehungswahrscheinlichkeiten 82
5.2.3 Einfache Zufallsstichproben 83
5.3 Schätzfunktionen 84
5.3.1 Der theoretische Ansatz 84
5.3.2 Schätzfunktionen für Mittelwerte 85
5.3.3 Schätzfunktionen für Anteilswerte 86
5.3.4 Schätzfunktionen für Varianzen 87
5.3.5 Konfidenzintervalle 88
5.4 Eine Computersimulation 89
5.5 Aufgaben 90
5.6 R-Code 91
6 Ergänzungen und Probleme 93
6.1 Einleitung 94
6.2 Unterschiedliche Stichprobendesigns 94
6.2.1 Partitionen der Grundgesamtheit 94
6.2.2 Geschichtete Auswahlverfahren 95
6.2.3 Mehrstufige Auswahlverfahren 96
6.3 Stichprobenausfälle 97
6.3.1 Illustration der Problematik 97
6.3.2 Konditionierende Variablen 99
6.4 Designgewichte 101
6.5 Aufgaben 103
6.6 R-Code 104
7 Deskriptive Modelle 105
7.1 Einleitung 106
7.2 Anpassen theoretischer Verteilungen 106
7.2.1 Häufigkeiten von Arztbesuchen 106
7.2.2 Interpretation des Schätzverfahrens 108
7.3 Gruppierte Einkommensdaten 109
7.4 Anpassungstests 112
7.5 Wie gut muss das Modell passen? 114
7.6 Aufgaben 116
7.7 R-Code 117
8 Probabilistische Regressionsmodelle 119
8.1 Einleitung 120
8.2 Eine binäre abhängige Variable 121
8.2.1 Der theoretische Ansatz 121
8.2.2 Beispiel: Schulabschluss Abitur 122
8.2.3 Zustände und Ereignisse 123
8.2.4 Quantitative Regressorvariablen 123
8.2.5 Interaktion zwischen Regressorvariablen 125
8.3 Standardfehler der Parameterschätzungen 125
8.4 Aufgaben 129
8.5 R-Code 130
9 Polytome abhängige Variablen 131
9.1 Einleitung 132
9.2 Eine quantitative abhängige Variable 132
9.2.1 Beispiel: Anzahl Arztbesuche 132
9.2.2 Parametrisierung der Erwartungswerte 135
9.3 Eine kategoriale abhängige Variable 136
9.3.1 Beispiel: Internetnutzung 136
9.3.2 Ein multinomiales Logitmodell 137
9.3.3 Vereinfachungen des Modells 138
9.3.4 Referenzkategorie und Standardfehler 139
9.3.5 Quantitative Regressorvariablen 140
9.4 Aufgaben 142
9.5 R-Code 143
10 Regression mit Dichtefunktionen 145
10.1 Einleitung 146
10.2 Gruppierte Einkommensdaten 146
10.2.1 Modellspezifikation und ML-Schätzung 146
10.2.2 Bedingte Erwartungswerte 149
10.3 Zeitdauern bis zu Ereignissen 151
10.3.1 Beispiel: Heiratsalter 151
10.3.2 Ein Modell für Heiratsraten 152
10.3.3 ML-Schätzung der Parameter 155
10.3.4 Verknüpfung mit Regressorvariablen 156
10.4 Aufgaben 160
10.5 R-Code 161
11 Regression mit Erwartungswerten 163
11.1 Einleitung 164
11.2 Der theoretische Ansatz 164
11.2.1 Modelle für bedingte Erwartungswerte 164
11.2.2 Die Methode der kleinsten Quadrate 165
11.3 Lineare Regressionsmodelle 166
11.3.1 Schematische Darstellung 166
11.3.2 Standardfehler 168
11.3.3 Beispiele 170
11.4 Nichtlineare Regressionsmodelle 171
11.5 Wozu dienen Regressionsmodelle? 173
11.5.1 Voraussagen für Erwartungswerte 173
11.5.2 Voraussagen für individuelle Werte 174
11.5.3 Vergleiche unterschiedlicher Modelle 175
11.6 Aufgaben 177
11.7 R-Code 178
Formelsammlung 179
Probeklausuren 185
Lösungshinweise 189
Literaturangaben 205
Index 207

Grundwissen Induktive Statistik

mit Aufgaben, Klausuren und Lösungen

Buch (Taschenbuch)

19,99 € inkl. gesetzl. MwSt.

Beschreibung

Die Induktive Statistik bietet in der Praxis zahlreiche Anwendungsmöglichkeiten, u. a. Schätzfunktionen, Hypothesentests und Stichproben aus realen Gesamtheiten.

Auf kompakte Art und Weise stellt das Buch die Grundkenntnisse der Induktiven Statistik vor: Es vermittelt die relevanten Begriffe, Methoden und Probleme. Zudem zeigt es auf, in welchem Kontext die Induktive Statistik in den Wirtschafts- und Sozialwissenschaften Anwendung findet.

Ein Formelteil, Aufgaben mit Lösungen sowie Musterklausuren helfen dabei, das Gelernte schnell zu vertiefen.

Prof. Dr. Andreas Behr lehrt Statistik an der Universität Duisburg-Essen..
Götz Rohwer ist Professor für sozialwissenschaftliche Methodenlehre und Statistik an der Ruhr-Universität Bochum und seit Oktober 2012 emeritiert.

Details

Einband

Taschenbuch

Erscheinungsdatum

23.04.2018

Verlag

Utb GmbH

Seitenzahl

209

Maße (L/B/H)

18,5/12,1/1,7 cm

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

23.04.2018

Verlag

Utb GmbH

Seitenzahl

209

Maße (L/B/H)

18,5/12,1/1,7 cm

Gewicht

231 g

Auflage

1

Sprache

Deutsch

ISBN

978-3-8252-4915-1

Das meinen unsere Kund*innen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Kund*innenkonto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kund*innen meinen

0.0

0 Bewertungen filtern

Weitere Artikel finden Sie in

  • Grundwissen Induktive Statistik
  • 1 Artifizielle Zufallsgeneratoren 15
    1.1 Einleitung 16
    1.2 Zufallsvariablen 16
    1.2.1 Ausgangspunkt: Gleichverteilung 16
    1.2.2 Konstruktion beliebiger Verteilungen 17
    1.2.3 Wahrscheinlichkeiten und Häufigkeiten 18
    1.2.4 Charakterisierungen von Verteilungen 19
    1.2.5 Funktionen von Zufallsvariablen 19
    1.2.6 Unendliche Wertebereiche 19
    1.3 Eine Erweiterung 20
    1.3.1 Dichtefunktionen 20
    1.3.2 Eine stetige Gleichverteilung 21
    1.3.3 Charakterisierungen stetiger Verteilungen 22
    1.3.4 Die Normalverteilung 22
    1.3.5 Funktionen stetiger Zufallsvariablen 23
    1.4 Algorithmische Zufallsgeneratoren 24
    1.4.1 Simulation eines Würfels 24
    1.4.2 Die Inversionsmethode 25
    1.5 Aufgaben 27
    1.6 R-Code 29
    2 Schätzen von Verteilungsparametern 31
    2.1 Einleitung 32
    2.2 Unabhängige Wiederholungen 32
    2.2.1 Stichprobenvariablen 32
    2.2.2 Stichprobenfunktionen 33
    2.3 Die Maximum-Likelihood-Methode 34
    2.3.1 Likelihoodfunktionen 34
    2.3.2 Ein einziger Parameter 35
    2.3.3 Mehrere Parameter 36
    2.4 Stetige Zufallsvariablen 38
    2.4.1 Likelihoodfunktionen 38
    2.4.2 Parameter der Normalverteilung 39
    2.5 Annahmen über Verteilungen 40
    2.6 Aufgaben 43
    2.7 R-Code 44
    3 Schätzfunktionen und Konfidenzintervalle 47
    3.1 Einleitung 48
    3.2 Schätzfunktionen 48
    3.2.1 Definition und Beispiele 48
    3.2.2 Erwartungstreue Schätzfunktionen 49
    3.3 Die Binomialverteilung 49
    3.4 Verteilungen von Schätzfunktionen 51
    3.4.1 Die Schätzfunktion für 52
    3.4.2 Die Schätzfunktion für 53
    3.5 Konfidenzintervalle 55
    3.6 Formelanhang 58
    3.7 Aufgaben 60
    3.8 R-Code 61
    4 Testen von Hypothesen 63
    4.1 Einleitung 64
    4.2 Signifikanztests 64
    4.2.1 Einfache Hypothesen 64
    4.2.2 Festlegung des kritischen Bereichs 65
    4.2.3 Fehler erster und zweiter Art 65
    4.2.4 Zusammengesetzte Hypothesen 67
    4.2.5 Signifikanztests und Konfidenzintervalle 68
    4.2.6 Werden Nullhypothesen bestätigt? 69
    4.3 Likelihood-Ratio-Tests 69
    4.3.1 Schematische Darstellung 69
    4.3.2 Ist der Würfel fair? 71
    4.3.3 Bedeutung des Stichprobenumfangs 73
    4.3.4 Zusammengesetzte Hypothesen 74
    4.4 Aufgaben 76
    4.5 R-Code 77
    5 Stichproben aus realen Gesamtheiten 79
    5.1 Einleitung 80
    5.2 Zufallsstichproben 81
    5.2.1 Stichprobendesign und Stichproben 81
    5.2.2 Inklusions- und Ziehungswahrscheinlichkeiten 82
    5.2.3 Einfache Zufallsstichproben 83
    5.3 Schätzfunktionen 84
    5.3.1 Der theoretische Ansatz 84
    5.3.2 Schätzfunktionen für Mittelwerte 85
    5.3.3 Schätzfunktionen für Anteilswerte 86
    5.3.4 Schätzfunktionen für Varianzen 87
    5.3.5 Konfidenzintervalle 88
    5.4 Eine Computersimulation 89
    5.5 Aufgaben 90
    5.6 R-Code 91
    6 Ergänzungen und Probleme 93
    6.1 Einleitung 94
    6.2 Unterschiedliche Stichprobendesigns 94
    6.2.1 Partitionen der Grundgesamtheit 94
    6.2.2 Geschichtete Auswahlverfahren 95
    6.2.3 Mehrstufige Auswahlverfahren 96
    6.3 Stichprobenausfälle 97
    6.3.1 Illustration der Problematik 97
    6.3.2 Konditionierende Variablen 99
    6.4 Designgewichte 101
    6.5 Aufgaben 103
    6.6 R-Code 104
    7 Deskriptive Modelle 105
    7.1 Einleitung 106
    7.2 Anpassen theoretischer Verteilungen 106
    7.2.1 Häufigkeiten von Arztbesuchen 106
    7.2.2 Interpretation des Schätzverfahrens 108
    7.3 Gruppierte Einkommensdaten 109
    7.4 Anpassungstests 112
    7.5 Wie gut muss das Modell passen? 114
    7.6 Aufgaben 116
    7.7 R-Code 117
    8 Probabilistische Regressionsmodelle 119
    8.1 Einleitung 120
    8.2 Eine binäre abhängige Variable 121
    8.2.1 Der theoretische Ansatz 121
    8.2.2 Beispiel: Schulabschluss Abitur 122
    8.2.3 Zustände und Ereignisse 123
    8.2.4 Quantitative Regressorvariablen 123
    8.2.5 Interaktion zwischen Regressorvariablen 125
    8.3 Standardfehler der Parameterschätzungen 125
    8.4 Aufgaben 129
    8.5 R-Code 130
    9 Polytome abhängige Variablen 131
    9.1 Einleitung 132
    9.2 Eine quantitative abhängige Variable 132
    9.2.1 Beispiel: Anzahl Arztbesuche 132
    9.2.2 Parametrisierung der Erwartungswerte 135
    9.3 Eine kategoriale abhängige Variable 136
    9.3.1 Beispiel: Internetnutzung 136
    9.3.2 Ein multinomiales Logitmodell 137
    9.3.3 Vereinfachungen des Modells 138
    9.3.4 Referenzkategorie und Standardfehler 139
    9.3.5 Quantitative Regressorvariablen 140
    9.4 Aufgaben 142
    9.5 R-Code 143
    10 Regression mit Dichtefunktionen 145
    10.1 Einleitung 146
    10.2 Gruppierte Einkommensdaten 146
    10.2.1 Modellspezifikation und ML-Schätzung 146
    10.2.2 Bedingte Erwartungswerte 149
    10.3 Zeitdauern bis zu Ereignissen 151
    10.3.1 Beispiel: Heiratsalter 151
    10.3.2 Ein Modell für Heiratsraten 152
    10.3.3 ML-Schätzung der Parameter 155
    10.3.4 Verknüpfung mit Regressorvariablen 156
    10.4 Aufgaben 160
    10.5 R-Code 161
    11 Regression mit Erwartungswerten 163
    11.1 Einleitung 164
    11.2 Der theoretische Ansatz 164
    11.2.1 Modelle für bedingte Erwartungswerte 164
    11.2.2 Die Methode der kleinsten Quadrate 165
    11.3 Lineare Regressionsmodelle 166
    11.3.1 Schematische Darstellung 166
    11.3.2 Standardfehler 168
    11.3.3 Beispiele 170
    11.4 Nichtlineare Regressionsmodelle 171
    11.5 Wozu dienen Regressionsmodelle? 173
    11.5.1 Voraussagen für Erwartungswerte 173
    11.5.2 Voraussagen für individuelle Werte 174
    11.5.3 Vergleiche unterschiedlicher Modelle 175
    11.6 Aufgaben 177
    11.7 R-Code 178
    Formelsammlung 179
    Probeklausuren 185
    Lösungshinweise 189
    Literaturangaben 205
    Index 207