
Beschreibung
Details
Einband
Set mit diversen Artikeln
Erscheinungsdatum
11.08.2023
Verlag
Carl HanserSeitenzahl
464
Maße (L/B/H)
24,6/17,9/3,1 cm
Gewicht
1012 g
Auflage
2. aktualisierte und erweiterte Auflage
Sprache
Deutsch
ISBN
978-3-446-47170-2
- Verarbeitung großer Datenmengen mit NumPy, z. B. im maschinellen Lernen
- Datenvisualisierung mit Matplotlib
- Ideal für Personen aus Wissenschaft, Ingenieurwesen und Datenanalyse
- Ideal zum Umstieg von Matlab auf Python
- Einführung anhand vieler Beispiele und Praxisfälle sowie Musterlösungen
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
Dieses Buch vermittelt die Python-Grundlagen zur Lösung numerischer Probleme aus den Gebieten »Data Science« und »Maschinelles Lernen«.
Im ersten Teil geht es um NumPy als Basis der numerischen Programmierung mit Python. Eingehend behandelt werden Arrays als zentraler Datentyp für alles, Numerische Operationen, Broadcasting und Ufuncs. Statistik und Wahrscheinlichkeitsrechnung ist ein eigenes Kapitel gewidmet, ebenso wie Boolscher Maskierung und File-Handling.
Die Datenvisualisierung mit Matplotlib bildet den Schwerpunkt des zweiten Teils. Zunächst geht es um die Begrifflichkeit von Matplotlib. Behandelt werden Linien-, Balkendiagramme, Histogramme und Konturplots.
Der dritte Teil dreht sich um Pandas mit seinen Series und DataFrames. Behandelt wird auch der Umgang mit verschiedensten Dateiformaten wie Excel, CSV und JSON sowie mit unvollständigen Daten und NaN. Aufgezeigt werden die Möglichkeiten der Datenvisualisierung direkt mit Pandas.
Der vierte Teil bietet Beispielanwendungen des erlernten Stoffes, wie z.B. ein Haushaltsbuch und eine praxistaugliche Einnahmeüberschussrechnung. Auch findet sich hier eine Einführung in Bildverarbeitungstechniken.
Fast jedes der 32 Kapitel enthält zusätzliche Übungen zum Erproben und Vertiefen des Erlernten, die zugehörigen Lösungen sind im fünften Teil zusammengefasst.
AUS DEM INHALT //
NumPy
• Numerische Operationen auf mehrdimensionalen Arrays
• Broadcasting und Ufuncs
Matplotlib:
• Diskrete und kontinuierliche Graphen
• Balken- und Säulendiagramme, Histogramme, Konturplots
Pandas:
• Series und DataFrames
• Arbeiten mit Excel-, csv- und JSON-Dateien
• Unvollständige Daten (NaN)
• Datenvisualisierung
Praxisbeispiele:
• Bildverarbeitung
• Haushaltsbuch und Einnahmeüberschussrechnung
Unsere Kundinnen und Kunden meinen
Verfassen Sie die erste Bewertung zu diesem Artikel
Helfen Sie anderen Kund*innen durch Ihre Meinung
Erste Bewertung verfassenKurze Frage zu unserer Seite
Vielen Dank für Ihr Feedback
Wir nutzen Ihr Feedback, um unsere Produktseiten zu verbessern. Bitte haben Sie Verständnis, dass wir Ihnen keine Rückmeldung geben können. Falls Sie Kontakt mit uns aufnehmen möchten, können Sie sich aber gerne an unseren Kund*innenservice wenden.
zum Kundenservice