Meine Filiale

Lineare Algebra und Analytische Geometrie III

Geometrie im euklidischen Raum. Mit historischen Anmerkungen von Erhard Scholz

Egbert Brieskorn

Buch (gebundene Ausgabe)
Buch (gebundene Ausgabe)
37,99
37,99
inkl. gesetzl. MwSt.
inkl. gesetzl. MwSt.
Sofort lieferbar Versandkostenfrei
Sofort lieferbar
Versandkostenfrei

Weitere Formate

Beschreibung

Dieser Band ist der dritte Teil des Lehrbuches von Egbert Brieskorn zur Linearen Algebra und analytischen Geometrie und legt den Schwerpunkt auf die Geometrie im euklidischen Raum. Er beginnt mit einem sorgfältigen Studium der Isometriegruppen euklidischer affiner Räume und ihrer Ähnlichkeitsabbildungen, führt über die Länge rektifizierbarer Kurven den Winkelbegriff der euklidischen Geometrie ein und entwickelt die Grundkonzepte der ebenen und sphärischen Trigonometrie. Daran schließt der Autor eine sorgfältige Diskussion der Isometriegruppen und der konformen Abbildungen der Sphären an und streicht die resultierende Sonderstellung der Sphären unter den kompakten Riemannschen Mannigfaltigkeiten heraus. Anschließend an eine Bemerkung Hermann Weyls über die tief liegende Rolle des Spins für die euklidische Geometrie macht der Autor einen längeren Ausflug in die Spindarstellung der euklidischen Rotationsgruppe sowie der Lorentzgruppe. Der Band wird durch eine detaillierte Klassifikation der euklidischen Isometrien und eine Klassifikation der affinen Quadriken mit Blick auf das klassische Studium der Kegelschnitte abgerundet. Im Anhang des Buches befinden sich Anmerkungen zur Geschichte der Euklidischen Geometrie von Erhard Scholz. 


Prof. Dr. Egbert Brieskorn war viele Jahre Professor für Mathematik an der Universität Bonn. 

Produktdetails

Einband gebundene Ausgabe
Seitenzahl 434
Erscheinungsdatum 26.04.2019
Sprache Deutsch
ISBN 978-3-658-25193-2
Verlag Springer Fachmedien Wiesbaden GmbH
Maße (L/B/H) 24,6/17,3/3 cm
Gewicht 923 g
Abbildungen 1 schwarzweisse Abbildungen
Auflage 1. Auflage 2019

Kundenbewertungen

Es wurden noch keine Bewertungen geschrieben.

  • Artikelbild-0
  • Geleitwort.- Vorwort.- Vorbemerkungen.- Kapitel 1: Euklidische affine Räume und ihre Isometriegruppen.- Kapitel 2: Die Länge von Kurven.- Kapitel 3: Winkel.- Kapitel 4: Spiegelungen und Drehungen.- Kapitel 5: Die Klassifikation der Isometrien.- Kapitel 6: Kegelschnitte.- Anhang: Anmerkungen zur Geschichte der Euklidischen Geometrie von Erhard Scholz.