Introduction to Smooth Manifolds

Graduate Texts in Mathematics 218

This book is an introductory graduate-level textbook on the theory of smooth manifolds. Its goal is to familiarize students with the tools they will need in order to use manifolds in mathematical or scientific research--- smooth structures, tangent vectors and covectors, vector bundles, immersed and embedded submanifolds, tensors, differential forms, de Rham cohomology, vector fields, flows, foliations, Lie derivatives, Lie groups, Lie algebras, and more. The approach is as concrete as possible, with pictures and intuitive discussions of how one should think geometrically about the abstract concepts, while making full use of the powerful tools that modern mathematics has to offer.
This second edition has been extensively revised and clarified, and the topics have been substantially rearranged. The book now introduces the two most important analytic tools, the rank theorem and the fundamental theorem on flows, much earlier so that they can be used throughout the book. A few new topics have been added, notably Sard’s theorem and transversality, a proof that infinitesimal Lie group actions generate global group actions, a more thorough study of first-order partial differential equations, a brief treatment of degree theory for smooth maps between compact manifolds, and an introduction to contact structures.
Prerequisites include a solid acquaintance with general topology, the fundamental group, and covering spaces, as well as basic undergraduate linear algebra and real analysis.
Portrait

John M. Lee is Professor of Mathematics at the University of Washington in Seattle, where he regularly teaches graduate courses on the topology and geometry of manifolds. He was the recipient of the American Mathematical Society's Centennial Research Fellowship and he is the author of four previous Springer books: the first edition (2003) of Introduction to Smooth Manifolds, the first edition (2000) and second edition (2010) of Introduction to Topological Manifolds, and Riemannian Manifolds: An Introduction to Curvature (1997).

… weiterlesen
In den Warenkorb
Filialabholung

Versandkostenfrei

Beschreibung

Produktdetails


Einband gebundene Ausgabe
Seitenzahl 708
Erscheinungsdatum 26.08.2012
Sprache Englisch
ISBN 978-1-4419-9981-8
Verlag Springer
Maße (L/B/H) 24,1/15,9/4,5 cm
Gewicht 1244 g
Abbildungen 176 schwarz-weiße Abbildungen
Auflage 2nd ed. 2013
Buch (gebundene Ausgabe, Englisch)
77,99
inkl. gesetzl. MwSt.
Sofort lieferbar
Versandkostenfrei
In den Warenkorb
Filialabholung

Versandkostenfrei

Ihr Feedback zur Seite
Haben Sie alle relevanten Informationen erhalten?
Vielen Dank für Ihr Feedback!
Entschuldigung, beim Absenden Ihres Feedbacks ist ein Fehler passiert. Bitte versuchen Sie es erneut.

Andere Kunden interessierten sich auch für

Wird oft zusammen gekauft

Introduction to Smooth Manifolds

Introduction to Smooth Manifolds

von John M. Lee
Buch (gebundene Ausgabe)
77,99
+
=
Introduction to Topological Manifolds

Introduction to Topological Manifolds

von John M. Lee
Buch (gebundene Ausgabe)
58,99
+
=

für

136,98

inkl. gesetzl. MwSt.

Alle kaufen

Weitere Bände von Graduate Texts in Mathematics mehr

  • Band 212

    3125735
    Lectures on Discrete Geometry
    von J. Matousek
    Buch
    83,99
  • Band 214

    32355251
    Partial Differential Equations
    von Jürgen Jost
    Buch
    58,99
  • Band 216

    23482605
    Matrices
    von Denis Serre
    Buch
    75,99
  • Band 218

    28447439
    Introduction to Smooth Manifolds
    von John M. Lee
    Buch
    77,99
    Sie befinden sich hier
  • Band 219

    3793960
    The Arithmetic of Hyperbolic 3-Manifolds
    von Colin Maclachlan
    Buch
    79,99
  • Band 222

    40399684
    Lie Groups, Lie Algebras, and Representations
    von Brian Hall
    Buch
    58,99
  • Band 223

    4480933
    Fourier Analysis and Its Applications
    von Anders Vretblad
    Buch
    49,99

Kundenbewertungen

Es wurden noch keine Bewertungen geschrieben.