Introduction to Machine Learning

3rd Edition

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. Subjects include supervised learning; Bayesian decision theory; parametric, semi-parametric, and nonparametric methods; multivariate analysis; hidden Markov models; reinforcement learning; kernel machines; graphical models; Bayesian estimation; and statistical testing. Machine learning is rapidly becoming a skill that computer science students must master before graduation. The third edition of Introduction to Machine Learning reflects this shift, with added support for beginners, including selected solutions for exercises and additional example data sets (with code available online).
Other substantial changes include discussions of outlier detection; ranking algorithms for perceptrons and support vector machines; matrix decomposition and spectral methods; distance estimation; new kernel algorithms; deep learning in multilayered perceptrons; and the nonparametric approach to Bayesian methods. All learning algorithms are explained so that students can easily move from the equations in the book to a computer program. The book can be used by both advanced undergraduates and graduate students. It will also be of interest to professionals who are concerned with the application of machine learning methods.

Portrait

Ethem Alpaydin is a Professor in the Department of Computer Engineering at Bogazici University, Istanbul.

… weiterlesen
In den Warenkorb
Filialabholung

Versandkostenfrei

Beschreibung

Produktdetails


Einband gebundene Ausgabe
Seitenzahl 640
Erscheinungsdatum 29.08.2014
Sprache Englisch
ISBN 978-0-262-02818-9
Reihe Adaptive Computation and Machine Learning series
Verlag The MIT Press
Maße (L/B/H) 23,6/20,9/3 cm
Gewicht 1284 g
Abbildungen 192 illustrations
Auflage 3rd Revised edition
Buch (gebundene Ausgabe, Englisch)
69,99
inkl. gesetzl. MwSt.
Sofort lieferbar
Versandkostenfrei
In den Warenkorb
Filialabholung

Versandkostenfrei

Ihr Feedback zur Seite
Haben Sie alle relevanten Informationen erhalten?
Vielen Dank für Ihr Feedback!
Entschuldigung, beim Absenden Ihres Feedbacks ist ein Fehler passiert. Bitte versuchen Sie es erneut.

Andere Kunden interessierten sich auch für

Wird oft zusammen gekauft

Introduction to Machine Learning

Introduction to Machine Learning

von Ethem Alpaydin
Buch (gebundene Ausgabe)
69,99
+
=
Deep Learning

Deep Learning

von Ian Goodfellow, Yoshua Bengio, Aaron Courville
(1)
Buch (gebundene Ausgabe)
79,99
+
=

für

149,98

inkl. gesetzl. MwSt.

Alle kaufen

Kundenbewertungen

Es wurden noch keine Bewertungen geschrieben.