The Elements of Statistical Learning

Data Mining, Inference, and Prediction

(1)

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book.

This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ``wide'' data (p bigger than n), including multiple testing and false discovery rates.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

Portrait

Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

… weiterlesen
In den Warenkorb
Filialabholung

Versandkostenfrei

Beschreibung

Produktdetails


Einband gebundene Ausgabe
Seitenzahl 745
Erscheinungsdatum 21.04.2017
Sprache Englisch
ISBN 978-0-387-84857-0
Reihe Springer Series in Statistics
Verlag Springer
Maße (L/B/H) 24,5/17,2/3,9 cm
Gewicht 1406 g
Abbildungen 658 Illustrations, black and white XXII, 658 illus.
Auflage 2nd ed. 2009, Corr. 9th printing 2017
Buch (gebundene Ausgabe, Englisch)
75,99
inkl. gesetzl. MwSt.
Sofort lieferbar
Versandkostenfrei
In den Warenkorb
Filialabholung

Versandkostenfrei

Andere Kunden interessierten sich auch für

  • Pattern Recognition and Machine Learning
    von Christopher M. Bishop
    (1)
    Buch (gebundene Ausgabe)
    85,99
  • Introduction To Error Analysis
    von John R. Taylor
    Buch (Taschenbuch)
    58,99
  • Data Science for Business
    von Foster Provost, Tom Fawcett
    Buch (Taschenbuch)
    32,99
  • Machine Learning
    von Kevin P. Murphy
    Buch (gebundene Ausgabe)
    91,99
  • Data Analytics with Hadoop
    von Benjamin Bengfort, Jenny Kim
    Buch (Taschenbuch)
    19,99
  • Hercule Poirot, Miss Marple and ... Hercule Poirot, Miss Marple und ...
    von Agatha Christie
    (2)
    Buch (Taschenbuch)
    8,90
  • Introduction to Statistical Machine Learning
    von Masashi (Professor Sugiyama
    Buch (Taschenbuch)
    119,99
  • Journey to the End of the Night
    von Louis-Ferdinand Celine
    Buch (Taschenbuch)
    11,99
  • The Algorithm Design Manual
    von Steve S. (State University of New York Skiena
    Buch (Set mit diversen Artikeln)
    64,99
  • Heart of Darkness (Collins Classics)
    von Joseph Conrad
    Buch (Taschenbuch)
    2,99
  • Machine Learning
    von Jason Bell
    Buch (Taschenbuch)
    49,99
  • 4 3 2 1 (4321)
    von Paul Auster
    (4)
    Buch (gebundene Ausgabe)
    12,99
  • Graphical Data Analysis with R
    von Antony Unwin
    Buch (gebundene Ausgabe)
    74,99
  • Cornelsen Senior English Library - Literatur / Ab 10. Schuljahr - Looking for Alaska
    von John Green
    (22)
    Schulbuch (Taschenbuch)
    10,25
  • Applied Text Analysis with Python
    von Benjamin Bengfort, Rebecca Bilbro, Tony Ojeda
    Buch (Taschenbuch)
    48,99
  • The Annotated Turing
    von C. Petzold
    Buch (Taschenbuch)
    25,99
  • Information Theory, Inference and Learning Algorithms
    von David J. C. MacKay
    Buch (gebundene Ausgabe)
    58,99
  • Principles and Theory for Data Mining and Machine Learning
    von Bertrand Clarke, Ernest Fokoue, Hao Helen Zhang
    Buch (gebundene Ausgabe)
    191,99
  • Introduction to Statistical Relational Learning
    von Lise (Assistant Professor, University of M. Getoor
    Buch (gebundene Ausgabe)
    69,99
  • Playway 3. Jahrgangsstufe 3. Activity Book mit Audio-CD
    (1)
    Schulbuch (Kunststoff-Einband)
    10,75

Wird oft zusammen gekauft

The Elements of Statistical Learning

The Elements of Statistical Learning

von Trevor Hastie, Robert Tibshirani, Jerome Friedman
(1)
Buch (gebundene Ausgabe)
75,99
+
=
An Introduction to Statistical Learning

An Introduction to Statistical Learning

von Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani
Buch (gebundene Ausgabe)
58,99
+
=

für

134,98

inkl. gesetzl. MwSt.

Alle kaufen

Kundenbewertungen

Durchschnitt
1 Bewertung
Übersicht
1
0
0
0
0

Die Bibel
von einer Kundin/einem Kunden am 15.08.2013

Ich brauche das Buch als Nachschlagewerk. Enthält alle wichtigen Konzepte des Data Mining. Alle mathematischen Konzepte sind gut und einfach verständlich erklärt.