Hydraulic Servo-systems

Inhaltsverzeichnis

1 Introduction.- 1.1 Historical View and Motivation for Hydraulic Systems.- 1.2 Aims and Focus of the Book.- 1.3 Outline of the Chapters.- 1.4 Background of the Work and Bibliographical Notes.- 2 General Description of Hydraulic Servo-systems.- 2.1 Basic Structure of Hydraulic Servo-systems.- 2.2 Description of the Components.- 2.2.1 Valves.- 2.2.2 Pumps and Actuators.- 2.2.3 Power Supplies.- 2.3 Classification of Hydraulic Servo-systems.- 2.4 Measurement and Control Devices.- 2.4.1 Control Loops.- 2.4.2 Sensors/Transducers.- 2.5 Application Examples.- 2.5.1 Hydraulically Actuated Manipulators.- 2.5.2 Hydraulic Automatic Gauge Control for Rolling Mills.- 3 Physical Fundamentals of Hydraulics.- 3.1 Physical Properties of Fluids.- 3.1.1 Viscosity and Related Quantities.- 3.1.2 Mass Density, Bulk Modulus and Related Quantities.- 3.1.3 Effective Bulk Modulus.- 3.1.4 Section Summary.- 3.2 General Equations of Fluid Motion.- 3.2.1 Continuity Equation and Pressure Transients.- 3.2.2 Navier-Stokes Equation.- 3.2.3 Bernoulli’s Theorem.- 3.2.4 Section Summary.- 3.3 Flow Through Passages.- 3.3.1 Flow Establishment in Pipelines.- 3.3.2 Flow Through Orifices.- 3.3.3 Flow Through Valves.- 3.3.4 Section Summary.- 3.4 Spool Port Forces.- 3.5 Electro-hydraulic Analogy.- 3.5.1 Hydraulic Capacitance.- 3.5.2 Hydraulic Resistance.- 3.5.3 Hydraulic Inductance.- 4 Physically Based Modelling.- 4.1 Introduction.- 4.1.1 Characterisation of Subsystems.- 4.1.2 Model Complexity and Applications.- 4.2 Elementary Models.- 4.2.1 Valves.- 4.2.2 Hydraulic Cylinders.- 4.2.3 Hydraulic Pumps and Motors.- 4.2.4 Power Supplies.- 4.2.5 Pipelines.- 4.3 Typical Non-linear State-space Models.- 4.4 Structured and Simplified Models of Valve-controlled Systems.- 4.4.1 Relevance of Valve and Pipeline Dynamics.- 4.4.2 Approximation of Pressure Dynamics.- 4.4.3 Introduction of Load Pressure.- 4.4.4 Linearised Models.- 4.5 Determination of Specific Model Parameters.- 4.5.1 Static Valve Characteristics.- 4.5.2 Dynamic Valve Characteristics.- 4.5.3 Actuator Dimensions and Mass.- 4.5.4 Friction Forces.- 4.5.5 Leakage Coefficients and Valve Underlap.- 4.6 Implementation and Software Tools.- 4.6.1 Simulation of Frietion Forces.- 4.6.2 Simulation of Mechanical Saturations.- 4.6.3 Simulation Packages.- 4.7 Section Summary.- 5 Experimental Modelling (Identification).- 5.1 Introduction.- 5.1.1 Generic Identification Procedure.- 5.1.2 Linear vs. Non-linear Identification.- 5.1.3 Online vs. Offline Identification.- 5.2 Pre-identification Process.- 5.2.1 Design of Input Signals.- 5.2.2 Pre-computations.- 5.3 Overview of Model Structures.- 5.3.1 Introductory Remarks and Definitions.- 5.3.2 Review of Linear Model Structures.- 5.3.3 Non-linear Input-output Models.- 5.3.4 Non-linear State-space Models.- 5.4 Description of Selected Non-linear Model Structures.- 5.4.1 Continuous-time Special (Canonical) Models.- 5.4.2 Fuzzy Models.- 5.4.3 Artificial Neural Networks.- 5.5 Parameter Estimation Methods.- 5.5.1 Prediction Error Methods.- 5.5.2 Classical Least-squares Analysis.- 5.5.3 Orthogonal Least-squares Estimator.- 5.5.4 Maximum Likelihood Method.- 5.5.5 Bias/Nariance Dilemma and Regularisation Concepts.- 5.6 Optimisation Algorithms.- 5.6.1 Newton’s Method.- 5.6.2 Damped Gauss-Newton Method.- 5.6.3 Levenberg-Marquardt Algorithrn.- 5.6.4 Computational Aspects.- 5.7 Grey-box Identification ofNon-linear Hydraulic Servo-system Models.- 5.7.1 Identification of Pressure Dynamics Model.- 5.7.2 Identification of Load Dynamics Model.- 5.7.3 Online Identification for Adaptive Control.- 5.7.4 Identification of General Models.- 5.8 Fuzzy Identification.- 5.8.1 Introduction and Model Parameter Overview.- 5.8.2 Structure Identification.- 5.8.3 Parameter Identification (Premise).- 5.8.4 Parameter Identification (Conclusion).- 5.8.5 Optimisation.- 5.9 Identification with Artificial Neural Networks.- 5.9.1 Selection of Artificial Neural Network Architectures.- 5.9.2 Estimation of Weights.- 5.9.3 Optimisation of Network Architecture (Growing/Pruning).- 5.10 Model Validation and Comparison of Model Structures.- 5.10.1 Prediction, Simulation and Cross-validation.- 5.10.2 Residual Tests.- 5.10.3 Model Structure Test Criteria.- 5.11 Implementation and Software Tools.- 5.12 Section Summary.- 6 Hydraulic Control Systems Design.- 6.1 Introduction.- 6.1.1 General Approaches.- 6.1.2 Literature Scan and Classification.- 6.2 Classical Feedback Control Design.- 6.2.1 Pressure Feedback.- 6.2.2 Acceleration Feedback.- 6.2.3 Position Feedback.- 6.2.4 Summary.- 6.3 Estimator-based State Feedback Control.- 6.3.1 Computation of the State Control Law.- 6.3.2 Selection of Pole Locations.- 6.3.3 Elimination of Steady-state Errors.- 6.3.4 Application to Hydraulic Servo-system Linear Models.- 6.4 Extensions to Linear Feedback Control.- 6.4.1 Combined Feedback and Feedforward Control.- 6.4.2 Adaptive Control.- 6.4.3 Compensation of Special (Static) Non-linearities.- 6.4.4 Conclusions and Drawbacks of Classical Approaches.- 6.5 Feedback Linearising Control.- 6.5.1 Feedback Linearisation and the Companion Form.- 6.5.2 Intuitive Concept of Input-Output Linearisation.- 6.5.3 Formalised Theory of Feedback Linearisation.- 6.5.4 Application to Hydraulic Servo-system Models.- 6.5.5 Feedback Linearisation Based on Bilinear Models.- 6.6 Approaches Similar to Feedback Linearisation.- 6.6.1 Direct Inverse Control.- 6.6.2 Cascade Load Pressure (Load Force) Control.- 6.7 Fuzzy Control.- 6.7.1 Fuzzy State Control.- 6.7.2 Fuzzy Model Predictive Control.- 6.8 Neural-network-based Control.- 6.8.1 Neural-network-based Feedback Linearisation.- 6.8.2 Control Based on Instantaneous Linearisation.- 6.9 Vibration Damping Control.- 6.9.1 Introduction.- 6.9.2 Vibration Damping Concept.- 6.9.3 Integrated Velocity Control.- 6.10 State Estimation.- 6.10.1 Velocity Estimation.- 6.10.2 Estimation of Acceleration and Friction Forces.- 6.10.3 Estimation of Extemal Forces.- 6.11 Implementation and Software Tools.- 6.12 Rapid Prototyping Tools for Control.- 6.13 Section Summary.- 7 Case Studies and Experimental Results.- 7.1 Identification and Control of a Synchronising Cylinder.- 7.1.1 System Description.- 7.1.2 Continuous-time Model in Canonical Form.- 7.1.3 Fuzzy Model Identification.- 7.1.4 Fuzzy Model Predictive Controller and Fuzzy State Feedback Controller.- 7.1.5 Neural Network (Multi-layer Perceptron) Identification.- 7.1.6 Section Summary.- 7.2 Modelling and Control of a Small Differential Cylinder.- 7.2.1 System Description.- 7.2.2 Physically Based Mode1.- 7.2.3 Linear vs. Non-linear Control.- 7.3 Control of a Big Differential Cylinder.- 7.3.1 System Description.- 7.3.2 Linear vs. Non-linear Control.- 7.4 Vibration Damping Control for a Flexible Robot.- 7.5 Vibration Damping Control for a Concrete Pump.- Appendix A Fluid Power Symbols.- Appendix B Data and Catalogue Sheets.- Appendix C Non-linear Control Background.- References.

Hydraulic Servo-systems

Modelling, Identification and Control

Buch (Gebundene Ausgabe, Englisch)

195,99 €

inkl. gesetzl. MwSt.

Hydraulic Servo-systems

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab 195,99 €
Taschenbuch

Taschenbuch

ab 187,99 €
eBook

eBook

ab 213,99 €

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

13.11.2002

Verlag

Springer London

Seitenzahl

355

Maße (L/B/H)

24,1/16/2,6 cm

Beschreibung

Rezension

From the reviews:


Altogether the book gives a comprehensive survey of physical modelling, conventional and modern control stategies for hydraulic drives and can be recommended to engineers and scientists who are working in this field.


Simulation News Europe
38/39 (2003) 61 – 62 (Reviewer: Peter Beater)

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

13.11.2002

Verlag

Springer London

Seitenzahl

355

Maße (L/B/H)

24,1/16/2,6 cm

Gewicht

758 g

Auflage

2003

Sprache

Englisch

ISBN

978-1-85233-692-9

Weitere Bände von Advances in Industrial Control

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Hydraulic Servo-systems
  • 1 Introduction.- 1.1 Historical View and Motivation for Hydraulic Systems.- 1.2 Aims and Focus of the Book.- 1.3 Outline of the Chapters.- 1.4 Background of the Work and Bibliographical Notes.- 2 General Description of Hydraulic Servo-systems.- 2.1 Basic Structure of Hydraulic Servo-systems.- 2.2 Description of the Components.- 2.2.1 Valves.- 2.2.2 Pumps and Actuators.- 2.2.3 Power Supplies.- 2.3 Classification of Hydraulic Servo-systems.- 2.4 Measurement and Control Devices.- 2.4.1 Control Loops.- 2.4.2 Sensors/Transducers.- 2.5 Application Examples.- 2.5.1 Hydraulically Actuated Manipulators.- 2.5.2 Hydraulic Automatic Gauge Control for Rolling Mills.- 3 Physical Fundamentals of Hydraulics.- 3.1 Physical Properties of Fluids.- 3.1.1 Viscosity and Related Quantities.- 3.1.2 Mass Density, Bulk Modulus and Related Quantities.- 3.1.3 Effective Bulk Modulus.- 3.1.4 Section Summary.- 3.2 General Equations of Fluid Motion.- 3.2.1 Continuity Equation and Pressure Transients.- 3.2.2 Navier-Stokes Equation.- 3.2.3 Bernoulli’s Theorem.- 3.2.4 Section Summary.- 3.3 Flow Through Passages.- 3.3.1 Flow Establishment in Pipelines.- 3.3.2 Flow Through Orifices.- 3.3.3 Flow Through Valves.- 3.3.4 Section Summary.- 3.4 Spool Port Forces.- 3.5 Electro-hydraulic Analogy.- 3.5.1 Hydraulic Capacitance.- 3.5.2 Hydraulic Resistance.- 3.5.3 Hydraulic Inductance.- 4 Physically Based Modelling.- 4.1 Introduction.- 4.1.1 Characterisation of Subsystems.- 4.1.2 Model Complexity and Applications.- 4.2 Elementary Models.- 4.2.1 Valves.- 4.2.2 Hydraulic Cylinders.- 4.2.3 Hydraulic Pumps and Motors.- 4.2.4 Power Supplies.- 4.2.5 Pipelines.- 4.3 Typical Non-linear State-space Models.- 4.4 Structured and Simplified Models of Valve-controlled Systems.- 4.4.1 Relevance of Valve and Pipeline Dynamics.- 4.4.2 Approximation of Pressure Dynamics.- 4.4.3 Introduction of Load Pressure.- 4.4.4 Linearised Models.- 4.5 Determination of Specific Model Parameters.- 4.5.1 Static Valve Characteristics.- 4.5.2 Dynamic Valve Characteristics.- 4.5.3 Actuator Dimensions and Mass.- 4.5.4 Friction Forces.- 4.5.5 Leakage Coefficients and Valve Underlap.- 4.6 Implementation and Software Tools.- 4.6.1 Simulation of Frietion Forces.- 4.6.2 Simulation of Mechanical Saturations.- 4.6.3 Simulation Packages.- 4.7 Section Summary.- 5 Experimental Modelling (Identification).- 5.1 Introduction.- 5.1.1 Generic Identification Procedure.- 5.1.2 Linear vs. Non-linear Identification.- 5.1.3 Online vs. Offline Identification.- 5.2 Pre-identification Process.- 5.2.1 Design of Input Signals.- 5.2.2 Pre-computations.- 5.3 Overview of Model Structures.- 5.3.1 Introductory Remarks and Definitions.- 5.3.2 Review of Linear Model Structures.- 5.3.3 Non-linear Input-output Models.- 5.3.4 Non-linear State-space Models.- 5.4 Description of Selected Non-linear Model Structures.- 5.4.1 Continuous-time Special (Canonical) Models.- 5.4.2 Fuzzy Models.- 5.4.3 Artificial Neural Networks.- 5.5 Parameter Estimation Methods.- 5.5.1 Prediction Error Methods.- 5.5.2 Classical Least-squares Analysis.- 5.5.3 Orthogonal Least-squares Estimator.- 5.5.4 Maximum Likelihood Method.- 5.5.5 Bias/Nariance Dilemma and Regularisation Concepts.- 5.6 Optimisation Algorithms.- 5.6.1 Newton’s Method.- 5.6.2 Damped Gauss-Newton Method.- 5.6.3 Levenberg-Marquardt Algorithrn.- 5.6.4 Computational Aspects.- 5.7 Grey-box Identification ofNon-linear Hydraulic Servo-system Models.- 5.7.1 Identification of Pressure Dynamics Model.- 5.7.2 Identification of Load Dynamics Model.- 5.7.3 Online Identification for Adaptive Control.- 5.7.4 Identification of General Models.- 5.8 Fuzzy Identification.- 5.8.1 Introduction and Model Parameter Overview.- 5.8.2 Structure Identification.- 5.8.3 Parameter Identification (Premise).- 5.8.4 Parameter Identification (Conclusion).- 5.8.5 Optimisation.- 5.9 Identification with Artificial Neural Networks.- 5.9.1 Selection of Artificial Neural Network Architectures.- 5.9.2 Estimation of Weights.- 5.9.3 Optimisation of Network Architecture (Growing/Pruning).- 5.10 Model Validation and Comparison of Model Structures.- 5.10.1 Prediction, Simulation and Cross-validation.- 5.10.2 Residual Tests.- 5.10.3 Model Structure Test Criteria.- 5.11 Implementation and Software Tools.- 5.12 Section Summary.- 6 Hydraulic Control Systems Design.- 6.1 Introduction.- 6.1.1 General Approaches.- 6.1.2 Literature Scan and Classification.- 6.2 Classical Feedback Control Design.- 6.2.1 Pressure Feedback.- 6.2.2 Acceleration Feedback.- 6.2.3 Position Feedback.- 6.2.4 Summary.- 6.3 Estimator-based State Feedback Control.- 6.3.1 Computation of the State Control Law.- 6.3.2 Selection of Pole Locations.- 6.3.3 Elimination of Steady-state Errors.- 6.3.4 Application to Hydraulic Servo-system Linear Models.- 6.4 Extensions to Linear Feedback Control.- 6.4.1 Combined Feedback and Feedforward Control.- 6.4.2 Adaptive Control.- 6.4.3 Compensation of Special (Static) Non-linearities.- 6.4.4 Conclusions and Drawbacks of Classical Approaches.- 6.5 Feedback Linearising Control.- 6.5.1 Feedback Linearisation and the Companion Form.- 6.5.2 Intuitive Concept of Input-Output Linearisation.- 6.5.3 Formalised Theory of Feedback Linearisation.- 6.5.4 Application to Hydraulic Servo-system Models.- 6.5.5 Feedback Linearisation Based on Bilinear Models.- 6.6 Approaches Similar to Feedback Linearisation.- 6.6.1 Direct Inverse Control.- 6.6.2 Cascade Load Pressure (Load Force) Control.- 6.7 Fuzzy Control.- 6.7.1 Fuzzy State Control.- 6.7.2 Fuzzy Model Predictive Control.- 6.8 Neural-network-based Control.- 6.8.1 Neural-network-based Feedback Linearisation.- 6.8.2 Control Based on Instantaneous Linearisation.- 6.9 Vibration Damping Control.- 6.9.1 Introduction.- 6.9.2 Vibration Damping Concept.- 6.9.3 Integrated Velocity Control.- 6.10 State Estimation.- 6.10.1 Velocity Estimation.- 6.10.2 Estimation of Acceleration and Friction Forces.- 6.10.3 Estimation of Extemal Forces.- 6.11 Implementation and Software Tools.- 6.12 Rapid Prototyping Tools for Control.- 6.13 Section Summary.- 7 Case Studies and Experimental Results.- 7.1 Identification and Control of a Synchronising Cylinder.- 7.1.1 System Description.- 7.1.2 Continuous-time Model in Canonical Form.- 7.1.3 Fuzzy Model Identification.- 7.1.4 Fuzzy Model Predictive Controller and Fuzzy State Feedback Controller.- 7.1.5 Neural Network (Multi-layer Perceptron) Identification.- 7.1.6 Section Summary.- 7.2 Modelling and Control of a Small Differential Cylinder.- 7.2.1 System Description.- 7.2.2 Physically Based Mode1.- 7.2.3 Linear vs. Non-linear Control.- 7.3 Control of a Big Differential Cylinder.- 7.3.1 System Description.- 7.3.2 Linear vs. Non-linear Control.- 7.4 Vibration Damping Control for a Flexible Robot.- 7.5 Vibration Damping Control for a Concrete Pump.- Appendix A Fluid Power Symbols.- Appendix B Data and Catalogue Sheets.- Appendix C Non-linear Control Background.- References.