Bayesian Analysis of Gene Expression Data

Inhaltsverzeichnis

Table of Notation.
 
1 Bioinformatics and Gene Expression Experiments.
 
1.1 Introduction.
 
1.2 About This Book.
 
2 Basic Biology.
 
2.1 Background.
 
2.1.1 DNA Structures and Transcription.
 
2.2 Gene Expression Microarray Experiments.
 
3 Bayesian Linear Models for Gene Expression.
 
3.1 Introduction.
 
3.2 Bayesian Analysis of a Linear Model.
 
3.3 Bayesian Linear Models for Differential Expression.
 
3.4 Bayesian ANOVA for Gene Selection.
 
3.5 Robust ANOVA model with Mixtures of Singular Distributions.
 
3.6 Case Study.
 
3.7 Accounting for Nuisance Effects.
 
3.8 Summary and Further Reading.
 
4 Bayesian Multiple Testing and False Discovery Rate Analysis.
 
4.1 Introduction to Multiple Testing.
 
4.2 False Discovery Rate Analysis.
 
4.3 Bayesian False Discovery Rate Analysis.
 
4.4 Bayesian Estimation of FDR.
 
4.5 FDR and Decision Theory.
 
4.6 FDR and bFDR Summary.
 
5 Bayesian Classification for Microarray Data.
 
5.1 Introduction.
 
5.2 Classification and Discriminant Rules.
 
5.3 Bayesian Discriminant Analysis.
 
5.4 Bayesian Regression Based Approaches to Classification.
 
5.5 Bayesian Nonlinear Classification.
 
5.6 Prediction and Model Choice.
 
5.7 Examples.
 
5.8 Discussion.
 
6 Bayesian Hypothesis Inference for Gene Classes.
 
6.1 Interpreting Microarray Results.
 
6.2 Gene Classes.
 
6.3 Bayesian Enrichment Analysis.
 
6.4 Multivariate Gene Class Detection.
 
6.5 Summary.
 
7 Unsupervised Classification and Bayesian Clustering.
 
7.1 Introduction to Bayesian Clustering for Gene Expression Data.
 
7.2 Hierarchical Clustering.
 
7.3 K-Means Clustering.
 
7.4 Model-Based Clustering.
 
7.5 Model-Based Agglomerative Hierarchical Clustering.
 
7.6 Bayesian Clustering.
 
7.7 Principal Components.
 
7.8 Mixture Modeling.
 
7.8.1 Label Switching.
 
7.9 Clustering Using Dirichlet Process Prior.
 
7.9.1 Infinite Mixture of Gaussian Distributions.
 
8 Bayesian Graphical Models.
 
8.1 Introduction.
 
8.2 Probabilistic Graphical Models.
 
8.3 Bayesian Networks.
 
8.4 Inference for Network Models.
 
9 Advanced Topics.
 
9.1 Introduction.
 
9.2 Analysis of Time Course Gene Expression Data.
 
9.3 Survival Prediction Using Gene Expression Data.
 
Appendix A: Basics of Bayesian Modeling.
 
A.1 Basics.
 
A.1.1 The General Representation Theorem.
 
A.1.2 Bayes' Theorem.
 
A.1.3 Models Based on Partial Exchangeability.
 
A.1.4 Modeling with Predictors.
 
A.1.5 Prior Distributions.
 
A.1.6 Decision Theory and Posterior and Predictive Inferences.
 
A.1.7 Predictive Distributions.
 
A.1.8 Examples.
 
A.2 Bayesian Model Choice.
 
A.3 Hierarchical Modeling.
 
A.4 Bayesian Mixture Modeling.
 
A.5 Bayesian Model Averaging.
 
Appendix B: Bayesian Computation Tools.
 
B.1 Overview.
 
B.2 Large-Sample Posterior Approximations.
 
B.2.1 The Bayesian Central Limit Theorem.
 
B.2.2 Laplace's Method.
 
B.3 Monte Carlo Integration.
 
B.4 Importance Sampling.
 
B.5 Rejection Sampling.
 
B.6 Gibbs Sampling.
 
B.7 The Metropolis Algorithm and Metropolis-Hastings.
 
B.8 Advanced Computational Methods.
 
B.8.1 Block MCMC.
 <

Bayesian Analysis of Gene Expression Data

Statistics in Practice

Buch (Gebundene Ausgabe, Englisch)

109,99 €

inkl. gesetzl. MwSt.

Bayesian Analysis of Gene Expression Data

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab 109,99 €
eBook

eBook

ab 74,99 €

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

01.09.2009

Verlag

John Wiley & Sons

Seitenzahl

256

Maße (L/B/H)

22,4/15,7/1,5 cm

Beschreibung

Rezension

"The target audience for this book is clearly statisticians rather than biologists ... It does provide a very useful overview of statistical genomics for anyone working in the field." (The Quarterly Review of Biology, 1 March 2012)
 
"Bioinformatics researchers from many fields will find much value in this book." (Mathematical Reviews, 2011)
 
"Experienced readers will find the review of advanced methods for bioinformatics challenging and attainable. This book will interest graduate students in statistics and bioinformatics researchers from many fields." (Book News, December 2009)

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

01.09.2009

Verlag

John Wiley & Sons

Seitenzahl

256

Maße (L/B/H)

22,4/15,7/1,5 cm

Gewicht

476 g

Auflage

1. Auflage

Sprache

Englisch

ISBN

978-0-470-51766-6

Weitere Bände von Statistics in Practice

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Bayesian Analysis of Gene Expression Data
  • Table of Notation.
     
    1 Bioinformatics and Gene Expression Experiments.
     
    1.1 Introduction.
     
    1.2 About This Book.
     
    2 Basic Biology.
     
    2.1 Background.
     
    2.1.1 DNA Structures and Transcription.
     
    2.2 Gene Expression Microarray Experiments.
     
    3 Bayesian Linear Models for Gene Expression.
     
    3.1 Introduction.
     
    3.2 Bayesian Analysis of a Linear Model.
     
    3.3 Bayesian Linear Models for Differential Expression.
     
    3.4 Bayesian ANOVA for Gene Selection.
     
    3.5 Robust ANOVA model with Mixtures of Singular Distributions.
     
    3.6 Case Study.
     
    3.7 Accounting for Nuisance Effects.
     
    3.8 Summary and Further Reading.
     
    4 Bayesian Multiple Testing and False Discovery Rate Analysis.
     
    4.1 Introduction to Multiple Testing.
     
    4.2 False Discovery Rate Analysis.
     
    4.3 Bayesian False Discovery Rate Analysis.
     
    4.4 Bayesian Estimation of FDR.
     
    4.5 FDR and Decision Theory.
     
    4.6 FDR and bFDR Summary.
     
    5 Bayesian Classification for Microarray Data.
     
    5.1 Introduction.
     
    5.2 Classification and Discriminant Rules.
     
    5.3 Bayesian Discriminant Analysis.
     
    5.4 Bayesian Regression Based Approaches to Classification.
     
    5.5 Bayesian Nonlinear Classification.
     
    5.6 Prediction and Model Choice.
     
    5.7 Examples.
     
    5.8 Discussion.
     
    6 Bayesian Hypothesis Inference for Gene Classes.
     
    6.1 Interpreting Microarray Results.
     
    6.2 Gene Classes.
     
    6.3 Bayesian Enrichment Analysis.
     
    6.4 Multivariate Gene Class Detection.
     
    6.5 Summary.
     
    7 Unsupervised Classification and Bayesian Clustering.
     
    7.1 Introduction to Bayesian Clustering for Gene Expression Data.
     
    7.2 Hierarchical Clustering.
     
    7.3 K-Means Clustering.
     
    7.4 Model-Based Clustering.
     
    7.5 Model-Based Agglomerative Hierarchical Clustering.
     
    7.6 Bayesian Clustering.
     
    7.7 Principal Components.
     
    7.8 Mixture Modeling.
     
    7.8.1 Label Switching.
     
    7.9 Clustering Using Dirichlet Process Prior.
     
    7.9.1 Infinite Mixture of Gaussian Distributions.
     
    8 Bayesian Graphical Models.
     
    8.1 Introduction.
     
    8.2 Probabilistic Graphical Models.
     
    8.3 Bayesian Networks.
     
    8.4 Inference for Network Models.
     
    9 Advanced Topics.
     
    9.1 Introduction.
     
    9.2 Analysis of Time Course Gene Expression Data.
     
    9.3 Survival Prediction Using Gene Expression Data.
     
    Appendix A: Basics of Bayesian Modeling.
     
    A.1 Basics.
     
    A.1.1 The General Representation Theorem.
     
    A.1.2 Bayes' Theorem.
     
    A.1.3 Models Based on Partial Exchangeability.
     
    A.1.4 Modeling with Predictors.
     
    A.1.5 Prior Distributions.
     
    A.1.6 Decision Theory and Posterior and Predictive Inferences.
     
    A.1.7 Predictive Distributions.
     
    A.1.8 Examples.
     
    A.2 Bayesian Model Choice.
     
    A.3 Hierarchical Modeling.
     
    A.4 Bayesian Mixture Modeling.
     
    A.5 Bayesian Model Averaging.
     
    Appendix B: Bayesian Computation Tools.
     
    B.1 Overview.
     
    B.2 Large-Sample Posterior Approximations.
     
    B.2.1 The Bayesian Central Limit Theorem.
     
    B.2.2 Laplace's Method.
     
    B.3 Monte Carlo Integration.
     
    B.4 Importance Sampling.
     
    B.5 Rejection Sampling.
     
    B.6 Gibbs Sampling.
     
    B.7 The Metropolis Algorithm and Metropolis-Hastings.
     
    B.8 Advanced Computational Methods.
     
    B.8.1 Block MCMC.
     <