
Text Mining of Web-Based Medical Content
89,95 €
inkl. MwStBeschreibung
Details
Format
ePUB
Kopierschutz
Ja
Family Sharing
Nein
Text-to-Speech
Ja
Erscheinungsdatum
09.10.2014
Herausgeber
Amy NeusteinVerlag
De Gruyter OldenbourgSeitenzahl
284 (Printausgabe)
Auflage
1. Auflage
Sprache
Englisch
EAN
9781614519768
. Includes Text Mining and Natural Language Processing Methods for extracting information from electronic health records and biomedical literature.
. Analyzes text analytic tools for new media such as online forums, social media posts, tweets and video sharing.
. Demonstrates how to use speech and audio technologies for improving access to online content for the visually impaired.
Text Mining of Web-Based Medical Content examines various approaches to deriving high quality information from online biomedical literature, electronic health records, query search terms, social media posts and tweets. Using some of the latest empirical methods of knowledge extraction, the authors show how online content, generated by both professionals and laypersons, can be mined for valuable information about disease processes, adverse drug reactions not captured during clinical trials, and tropical fever outbreaks. Additionally, the authors show how to perform infromation extraction on a hospital intranet, how to build a social media search engine to glean information about patients' own experiences interacting with healthcare professionals, and how to improve access to online health information.
This volume provides a wealth of timely material for health informatic professionals and machine learning, data mining, and natural language researchers.
Topics in this book include:
. Mining Biomedical Literature and Clinical Narratives
. Medication Information Extraction
. Machine Learning Techniques for Mining Medical Search Queries
. Detecting the Level of Personal Health Information Revealed in Social Media
. Curating Layperson's Personal Experiences with Health Care from Social Media and Twitter
. Health Dialogue Systems for Improving Access to Online Content
. Crowd-based Audio Clips to Improve Online Video Access for the Visually Impaired
. Semantic-based Visual Information Retrieval for Mining Radiographic Image Data
. Evaluating the Importance of Medical Terminology in YouTube Video Titles and Descriptions
Weitere Bände von Speech Technology and Text Mining in Medicine and Health Care
-
Zur Artikeldetailseite von Text Mining of Web-Based Medical Content des Autors Amy Neustein
Band 1
Amy Neustein
Text Mining of Web-Based Medical ContenteBook
89,95 €
-
Zur Artikeldetailseite von Speech and Language Technology for Language Disorders des Autors Katharine Beals
Band 2
Katharine Beals
Speech and Language Technology for Language DisorderseBook
84,95 €
-
Zur Artikeldetailseite von Speech and Automata in Health Care des Autors Amy Neustein
Band 3
Amy Neustein
Speech and Automata in Health CareeBook
89,95 €
-
Zur Artikeldetailseite von Computational Bioacoustics des Autors Todor Ganchev
Band 4
Todor Ganchev
Computational BioacousticseBook
74,95 €
-
Zur Artikeldetailseite von Signal and Acoustic Modeling for Speech and Communication Disorders des Autors Hemant A. Patil
Band 5
Hemant A. Patil
Signal and Acoustic Modeling for Speech and Communication DisorderseBook
84,95 €
-
Zur Artikeldetailseite von Voice Technologies for Speech Reconstruction and Enhancement des Autors Hemant A. Patil
Band 6
Hemant A. Patil
Voice Technologies for Speech Reconstruction and EnhancementeBook
79,95 €
-
Zur Artikeldetailseite von Acoustic Analysis of Pathologies des Autors Amy Neustein
Band 7
Amy Neustein
Acoustic Analysis of PathologieseBook
124,95 €
Unsere Kundinnen und Kunden meinen
Verfassen Sie die erste Bewertung zu diesem Artikel
Helfen Sie anderen Kund*innen durch Ihre Meinung
Erste Bewertung verfassenKurze Frage zu unserer Seite
Vielen Dank für Ihr Feedback
Wir nutzen Ihr Feedback, um unsere Produktseiten zu verbessern. Bitte haben Sie Verständnis, dass wir Ihnen keine Rückmeldung geben können. Falls Sie Kontakt mit uns aufnehmen möchten, können Sie sich aber gerne an unseren Kund*innenservice wenden.
zum Kundenservice