Stochastic Geometry and Its Applications

Inhaltsverzeichnis

Foreword to the first edition xiii

From the preface to the first edition xvii

Preface to the second edition xix

Preface to the third edition xxi

Notation xxiii

1 Mathematical foundations 1

1.1 Set theory 1

1.2 Topology in Euclidean spaces 3

1.3 Operations on subsets of Euclidean space 5

1.4 Mathematical morphology and image analysis 7

1.5 Euclidean isometries 9

1.6 Convex sets in Euclidean spaces 10

1.7 Functions describing convex sets 17

1.8 Polyconvex sets 24

1.9 Measure and integration theory 27

2 Point processes I: The Poisson point process 35

2.1 Introduction 35

2.2 The binomial point process 36

2.3 The homogeneous Poisson point process 41

2.4 The inhomogeneous and general Poisson point process 51

2.5 Simulation of Poisson point processes 53

2.6 Statistics for the homogeneous Poisson point process 55

3 Random closed sets I: The Boolean model 64

3.1 Introduction and basic properties 64

3.2 The Boolean model with convex grains 78

3.3 Coverage and connectivity 89

3.4 Statistics 95

3.5 Generalisations and variations 103

3.6 Hints for practical applications 106

4 Point processes II: General theory 108

4.1 Basic properties 108

4.2 Marked point processes 116

4.3 Moment measures and related quantities 120

4.4 Palm distributions 127

4.5 The second moment measure 139

4.6 Summary characteristics 143

4.7 Introduction to statistics for stationary spatial point processes 145

4.8 General point processes 156

5 Point processes III: Models 158

5.1 Operations on point processes 158

5.2 Doubly stochastic Poisson processes (Cox processes) 166

5.3 Neyman-Scott processes 171

5.4 Hard-core point processes 176

5.5 Gibbs point processes 178

5.6 Shot-noise fields 200

6 Random closed sets II: The general case 205

6.1 Basic properties 205

6.2 Random compact sets 213

6.3 Characteristics for stationary and isotropic random closed sets 216

6.4 Nonparametric statistics for stationary random closed sets 230

6.5 Germ-grain models 237

6.6 Other random closed set models 255

6.7 Stochastic reconstruction of random sets 276

7 Random measures 279

7.1 Fundamentals 279

7.2 Moment measures and related characteristics 284

7.3 Examples of random measures 286

8 Line, fibre and surface processes 297

8.1 Introduction 297

8.2 Flat processes 302

8.3 Planar fibre processes 314

8.4 Spatial fibre processes 330

8.5 Surface processes 333

8.6 Marked fibre and surface processes 339

9 Random tessellations, geometrical networks and graphs 343

9.1 Introduction and definitions 343

9.2 Mathematical models for random tessellations 346

9.3 General ideas and results for stationary planar tessellations 357

9.4 Mean-value formulae for stationary spatial tessellations 367

9.5 Poisson line and plane tessellations 370

9.6 STIT tessellations 375

9.7 Poisson-Voronoi and Delaunay tessellations 376

9.8 Laguerre tessellations 386

9.9 Johnson-Mehl tessellations 388

9.10 Statistics for stationary tessellations 390

9.11 Random geometrical networks 397

9.12 Random graphs 402

10 Stereology 411

10.1 Introduction 411

10.2 The fundamental mean-value formulae of stereology 413

10.3 Stereological mean-value formulae for germ-grain models 421

10.4 Stereological methods for spatial systems of balls 425

10.5 Stereological problems for nonspherical grains (shape-and-size problems) 436

10.6 Stereology for spatial tessellations 440

10.7 Second-order characteristics and directional distributions 444

References 453

Author index 507

Subject index 521

Stochastic Geometry and Its Applications

Buch (Gebundene Ausgabe, Englisch)

138,99 €

inkl. gesetzl. MwSt.

Stochastic Geometry and Its Applications

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab 138,99 €
eBook

eBook

ab 88,99 €

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

10.09.2013

Verlag

John Wiley & Sons Inc

Seitenzahl

582

Maße (L/B/H)

25/17,5/3,6 cm

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

10.09.2013

Verlag

John Wiley & Sons Inc

Seitenzahl

582

Maße (L/B/H)

25/17,5/3,6 cm

Gewicht

1178 g

Auflage

3. Auflage

Sprache

Englisch

ISBN

978-0-470-66481-0

Weitere Bände von Wiley Series in Probability and Statistics

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

Die Leseprobe wird geladen.
  • Stochastic Geometry and Its Applications
  • Foreword to the first edition xiii

    From the preface to the first edition xvii

    Preface to the second edition xix

    Preface to the third edition xxi

    Notation xxiii

    1 Mathematical foundations 1

    1.1 Set theory 1

    1.2 Topology in Euclidean spaces 3

    1.3 Operations on subsets of Euclidean space 5

    1.4 Mathematical morphology and image analysis 7

    1.5 Euclidean isometries 9

    1.6 Convex sets in Euclidean spaces 10

    1.7 Functions describing convex sets 17

    1.8 Polyconvex sets 24

    1.9 Measure and integration theory 27

    2 Point processes I: The Poisson point process 35

    2.1 Introduction 35

    2.2 The binomial point process 36

    2.3 The homogeneous Poisson point process 41

    2.4 The inhomogeneous and general Poisson point process 51

    2.5 Simulation of Poisson point processes 53

    2.6 Statistics for the homogeneous Poisson point process 55

    3 Random closed sets I: The Boolean model 64

    3.1 Introduction and basic properties 64

    3.2 The Boolean model with convex grains 78

    3.3 Coverage and connectivity 89

    3.4 Statistics 95

    3.5 Generalisations and variations 103

    3.6 Hints for practical applications 106

    4 Point processes II: General theory 108

    4.1 Basic properties 108

    4.2 Marked point processes 116

    4.3 Moment measures and related quantities 120

    4.4 Palm distributions 127

    4.5 The second moment measure 139

    4.6 Summary characteristics 143

    4.7 Introduction to statistics for stationary spatial point processes 145

    4.8 General point processes 156

    5 Point processes III: Models 158

    5.1 Operations on point processes 158

    5.2 Doubly stochastic Poisson processes (Cox processes) 166

    5.3 Neyman-Scott processes 171

    5.4 Hard-core point processes 176

    5.5 Gibbs point processes 178

    5.6 Shot-noise fields 200

    6 Random closed sets II: The general case 205

    6.1 Basic properties 205

    6.2 Random compact sets 213

    6.3 Characteristics for stationary and isotropic random closed sets 216

    6.4 Nonparametric statistics for stationary random closed sets 230

    6.5 Germ-grain models 237

    6.6 Other random closed set models 255

    6.7 Stochastic reconstruction of random sets 276

    7 Random measures 279

    7.1 Fundamentals 279

    7.2 Moment measures and related characteristics 284

    7.3 Examples of random measures 286

    8 Line, fibre and surface processes 297

    8.1 Introduction 297

    8.2 Flat processes 302

    8.3 Planar fibre processes 314

    8.4 Spatial fibre processes 330

    8.5 Surface processes 333

    8.6 Marked fibre and surface processes 339

    9 Random tessellations, geometrical networks and graphs 343

    9.1 Introduction and definitions 343

    9.2 Mathematical models for random tessellations 346

    9.3 General ideas and results for stationary planar tessellations 357

    9.4 Mean-value formulae for stationary spatial tessellations 367

    9.5 Poisson line and plane tessellations 370

    9.6 STIT tessellations 375

    9.7 Poisson-Voronoi and Delaunay tessellations 376

    9.8 Laguerre tessellations 386

    9.9 Johnson-Mehl tessellations 388

    9.10 Statistics for stationary tessellations 390

    9.11 Random geometrical networks 397

    9.12 Random graphs 402

    10 Stereology 411

    10.1 Introduction 411

    10.2 The fundamental mean-value formulae of stereology 413

    10.3 Stereological mean-value formulae for germ-grain models 421

    10.4 Stereological methods for spatial systems of balls 425

    10.5 Stereological problems for nonspherical grains (shape-and-size problems) 436

    10.6 Stereology for spatial tessellations 440

    10.7 Second-order characteristics and directional distributions 444

    References 453

    Author index 507

    Subject index 521