Parametrische Statistik

Inhaltsverzeichnis


Stichprobenstatistik.- Stichprobenstatistiken in R.- Verteilungen, ihre Parameter und deren Schätzer.- Verteilungen, Parameter und Schätzer in R.- Korrelation und Assoziation.- Korrelation und Assoziation in R.- Regression - Teil I.- Regression in R Teil I.- Regression Teil II.- Regression in R Teil II.- Das Lineare Modell: t-Test und ANOVA.- Das Lineare Modell: t-Test und ANOVA in R.- Hypothesen und Tests.- Experimentelles Design.- Multiple Regression.- Multiple Regression in R.- Ausblick.

Parametrische Statistik

Verteilungen, maximum likelihood und GLM in R

Buch (Taschenbuch)

37,99 € inkl. gesetzl. MwSt.

Weitere Formate

Taschenbuch

37,99 €

eBook

ab 16,99 €

  • Parametrische Statistik

    PDF (Springer)

    Sofort per Download lieferbar

    16,99 €

    PDF (Springer)
  • Parametrische Statistik

    PDF (Springer)

    Sofort per Download lieferbar

    29,99 €

    PDF (Springer)

Beschreibung


Beispielreich baut dieses Buch Schritt für Schritt die statistischen Grundlagen moderner Datenanalysen auf. Im Gegensatz zu anderen einführenden Werken legt dieses Buch großen Wert auf einen umfassend gespannten Bogen, einen roten Faden, der alle Methoden zusammenführt. Dabei werden klassische statistische Methoden (etwa t-Test oder multiple Regression) als Spezialfall des Generalisierten Linearen Modells entwickelt. Entsprechend legt das Buch zunächst eine Grundlage in beschreibender Statistik, Verteilungen und maximum likelihood, aus der dann alle anderen Verfahren abgeleitet werden (ANOVA, multiple Regression).

Jeder Schritt ist auf zwei Kapitel verteilt: Im ungradzahligen Kapitel wird anhand von vielen Beispielen und Abbildungen die Idee der statistischen Herangehensweise erläutert. Im sich daran anschließenden gradzahligen Kapitel wird die Umsetzung in der freien Statistiksoftware R gezeigt. Ein Kapitel zur Wissenschafts- und Forschungstheorie und eines zum Design von Experimenten und Stichprobeverfahren komplettiert dieses einleitende Werk.

Das Buch legt großen Wert auf Verständlichkeit und Umsetzung. Mathematische Herleitungen treten demgegenüber stark in den Hintergrund. Jedes Kapitel enthält explizit ausgewiesene Lerninhalte, die durch Übungen zu jedem R-Kapitel geprüft werden können. Ein ausführliches Schlagwortverzeichnis inklusive der R-Funktionen macht das Buch auch als Nachschlagewerk nutzbar.

Die zweite Auflage wurde ergänzt um Schätzung mittels der Momentenmethode, Residuendiagnostik für nicht-normalverteilte Daten und die erschöpfende Modellsuche.


Carsten Dormann ist Professor für Biometrie und Umweltsystemanalyse an der Albert-Ludwigs-Universität Freiburg. Seit seiner Promotion in Pflanzenökologie beschäftigt er sich mit statistischen Auswertungen bisweilen kompliziert strukturierter Daten. Seit über 10 Jahren lehrt er einführende Statistik für StudentInnen der Forst- und Umweltwissenschaften, mit besonderem Fokus auf die Befähigung zur selbstständigen Analyse.

Details

Einband

Taschenbuch

Erscheinungsdatum

06.09.2017

Verlag

Springer Berlin

Seitenzahl

363

Maße (L/B/H)

24,4/17,2/2 cm

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

06.09.2017

Verlag

Springer Berlin

Seitenzahl

363

Maße (L/B/H)

24,4/17,2/2 cm

Gewicht

720 g

Auflage

2. Auflage

Reihe

Statistik und ihre Anwendungen

Sprache

Deutsch

ISBN

978-3-662-54683-3

Das meinen unsere Kund*innen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Kund*innenkonto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kund*innen meinen

0.0

0 Bewertungen filtern

Weitere Artikel finden Sie in

  • Parametrische Statistik

  • Stichprobenstatistik.- Stichprobenstatistiken in R.- Verteilungen, ihre Parameter und deren Schätzer.- Verteilungen, Parameter und Schätzer in R.- Korrelation und Assoziation.- Korrelation und Assoziation in R.- Regression - Teil I.- Regression in R Teil I.- Regression Teil II.- Regression in R Teil II.- Das Lineare Modell: t-Test und ANOVA.- Das Lineare Modell: t-Test und ANOVA in R.- Hypothesen und Tests.- Experimentelles Design.- Multiple Regression.- Multiple Regression in R.- Ausblick.