• Produktbild: Model-Based System Architecture
  • Produktbild: Model-Based System Architecture

Model-Based System Architecture Wiley Series in Systems Engineering and Management

168,99 €

inkl. MwSt, Versandkostenfrei

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

26.04.2022

Verlag

John Wiley & Sons Inc

Seitenzahl

464

Maße (L/B/H)

23,5/15,7/2,9 cm

Gewicht

454 g

Auflage

2. Auflage

Sprache

Englisch

ISBN

978-1-119-74665-2

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

26.04.2022

Verlag

John Wiley & Sons Inc

Seitenzahl

464

Maße (L/B/H)

23,5/15,7/2,9 cm

Gewicht

454 g

Auflage

2. Auflage

Sprache

Englisch

ISBN

978-1-119-74665-2

Herstelleradresse

Libri GmbH
Europaallee 1
36244 Bad Hersfeld
DE

Email: gpsr@libri.de

Weitere Bände von Wiley Series in Systems Engineering and Management

Unsere Kundinnen und Kunden meinen

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0 Bewertungen filtern

Die Leseprobe wird geladen.
  • Produktbild: Model-Based System Architecture
  • Produktbild: Model-Based System Architecture
  • Foreword xv

    Preface xvii

    About the Companion Website xxi

    1 Introduction 1

    2 An Example: The Scalable Observation and Rescue System 5

    3 Better Products - The Value of Systems Architecting 9

    3.1 The Share of Systems Architecting in Making Better Products 9

    3.2 Benefits that can be Achieved 10

    3.2.1 Benefit for the Customer 10

    3.2.2 Benefit for the Organization 12

    3.3 Benefits that can be Communicated Inside the Organization 14

    3.4 Beneficial Elements of Systems Architecting 15

    3.5 Benefits of Model-Based Systems Architecting 16

    4 Systems, Systems of Systems, and Cyber-Physical Systems 17

    4.1 Definition of "System" 17

    4.1.1 System Elements 19

    4.1.2 System Context 20

    4.1.3 System Characteristics 21

    4.1.4 Purpose 22

    4.1.5 System Evolution 23

    4.2 Definition of "System of Systems" 23

    4.3 Definition of "Cyber-Physical System" 26

    4.4 Composition of a "Cyber-Physical System of Systems" 27

    5 Definition of System Architecture 31

    5.1 What Is Architecture? - Discussion of Some Existing Definitions 31

    5.2 Relations Between Concepts of "System," "Architecture," and "Architecture Description" 33

    5.3 Definition of "Architecture" 35

    5.3.1 Interactions 36

    5.3.2 Principles 37

    5.3.3 Architecture Decisions 37

    5.4 Functional and Physical Architecture 37

    5.5 Taxonomy of Physical Architectures 39

    5.5.1 Logical Architecture 40

    5.5.2 Product Architecture 41

    5.5.3 Base Architecture 41

    5.6 Architecture Landscape for Systems 41

    5.6.1 System Architecture 42

    5.6.2 System Design 43

    5.6.3 Discipline-Specific Architecture and Design 44

    6 Model-Based Systems Architecting 45

    7 Model Governance 51

    7.1 Overview 51

    7.2 Model Governance in Practice 52

    8 Architecture Description 57

    8.1 Architecture Descriptions for Stakeholders 58

    8.2 Definition of "Architecture Description" 60

    8.2.1 Architecture Viewpoints 62

    8.2.2 Architecture Views 65

    8.2.3 Architecture Decisions 67

    8.2.4 Architecture Rationales 69

    8.3 How to Get Architecture Descriptions? 69

    8.3.1 Model-Based Vision 69

    8.3.2 Forms and Templates 71

    9 Architecture Patterns and Principles 75

    9.1 The SYSMOD Zigzag Pattern 76

    9.2 The Base Architecture 82

    9.3 Cohesion and Coupling 85

    9.4 Separation of Definition, Usage, and Run-Time 87

    9.5 Separate Stable from Unstable Parts 89

    9.6 The Ideal System 89

    9.7 View and Model 90

    9.8 Diagram Layout 92

    9.9 System Model Structure 93

    9.10 System Architecture Principles 95

    9.11 Heuristics 95

    9.11.1 Heuristics as a Tool for the System Architect 95

    9.11.2 Simplify, Simplify, Simplify: Strength and Pitfall 97

    10 Model-Based Requirements Engineering and Use Case Analysis 99

    10.1 Requirement and Use Case Definitions 99

    10.2 Model-Based Requirements and Use Case Analysis from the MBSA Viewpoint 102

    10.2.1 Identify and Define Requirements 103

    10.2.2 Specify the System Context 104

    10.2.3 Identify Use Cases 105

    10.2.4 Describe Use Case Flows 109

    10.2.5 Model the Domain Knowledge 110

    10.3 The SAMS Method 112

    10.3.1 SAMS Method Definitions 113

    10.3.2 SAMS Method 114

    10.4 Use Cases 2.0 117

    11 Perspectives, Viewpoints and Views in System Architecture 119

    11.1 Introduction 119

    11.2 The Functional Perspective 121

    11.2.1 SysML Modeling of Functional Blocks 123

    11.2.2 Architecture Views for the System Architect 124

    11.2.3 Different Architecture Views for the Stakeholders of Different Functions 124

    11.3 The Physical Perspective 125

    11.3.1 Logical Architecture Example 126

    11.3.2 Product Architecture Example 127

    11.4 The Behavioral Perspective 130

    11.5 The Layered Perspective 130

    11.5.1 The Layered Approach 130

    11.5.2 The Layered Perspective in Systems Architecting 132

    11.5.3 Relation to the Domain Knowledge Model 134

    11.5.4 Architecting the Layers 136

    11.5.5 SysML Modeling of Layers 136

    11.6 System Deployment Perspective 142

    11.7 Other Perspectives 144

    11.8 Relation to the System Context 146

    11.8.1 Validity of the System Boundary 146

    11.8.2 Using the System Context as a Part of the Stakeholder-Specific Views 146

    11.8.3 Special System Context View for Verification 147

    11.9 Mapping Different System Elements Across Different Levels 148

    11.9.1 Functional-to-Physical Perspective Mapping 149

    11.9.2 Mapping More Perspectives 153

    11.9.3 Mapping Different Levels 153

    11.10 Traceability 155

    11.11 Perspectives and Architecture Views in Model-based Systems Architecting 155

    11.11.1 Creating Different Architecture Views in a Model-Based Approach 155

    11.11.2 Using SysML for Working with Different Perspectives and Architecture Views 157

    11.11.3 The Importance of Architecture Viewpoints in Model-Based Systems Architecting 159

    12 Typical Architecture Stakeholders 161

    12.1 Overview 161

    12.2 Requirements Engineering 162

    12.3 Verification 163

    12.4 Configuration Management 166

    12.5 Engineering and Information Technology Disciplines 167

    12.6 Project and Product Management 171

    12.7 Risk Managers 174

    12.8 Development Roadmap Planners 174

    12.9 Production and Distribution 177

    12.10 Suppliers 178

    12.11 Marketing and Brand Management 178

    12.12 Management 180

    13 Roles 185

    13.1 Roles 185

    13.2 The System Architect Role 186

    13.2.1 Objective 186

    13.2.2 Responsibilities 186

    13.2.3 Tasks 187

    13.2.4 Competences 188

    13.2.5 Required Skills of a System Architect 188

    13.2.6 Required Skills for Model-Based Systems Architecting 190

    13.3 System Architecture Teams 190

    13.4 System Architecture Stakeholders 192

    13.5 Recruiting System Architecture People 192

    13.6 Talent Development for System Architects 194

    14 Processes 199

    14.1 Systems Architecting Processes 199

    14.1.1 Overview 199

    14.1.2 Example of Generic Process Steps 201

    14.1.3 Example of Concrete Process Steps 202

    14.1.4 Validation, Review, and Approval in a Model-Based Environment 203

    14.2 Design Definition Process 207

    14.3 Change and Configuration Management Processes 207

    14.4 Other Processes Involving the System Architect 207

    15 Tools for the Architect 209

    16 Agile Approaches 213

    16.1 The History of Iterative-Incremental Approaches 214

    16.1.1 Project Mercury (NASA, 1958) 214

    16.1.2 The New New Product Development Game (1986) 215

    16.1.3 Boehm's Spiral Model (1988) 216

    16.1.4 Lean (1945 Onwards) 217

    16.1.5 Dynamic Systems Development Method (DSDM, 1994) 219

    16.1.6 Scrum (1995) 220

    16.2 The Manifesto for Agile Software Development (2001) 221

    16.3 Agile Principles in Systems Engineering 223

    16.3.1 Facilitate Face-to-Face Communication 223

    16.3.2 Create a State of Confidence 224

    16.3.3 Build Transdisciplinary and Self-Organized Teams 225

    16.3.4 Create a Learning Organization 225

    16.3.5 Design, but No Big Design (Up-Front) 226

    16.3.6 Reduce Dependencies 227

    16.3.7 Foster a Positive Error Culture 228

    16.4 Scaling Agile 228

    16.5 System Architects in an Agile Environment 230

    17 The FAS Method 233

    17.1 Motivation 234

    17.2 Functional Architectures for Systems 236

    17.3 How the FAS Method Works 239

    17.4 FAS Heuristics 242

    17.5 FAS with SysML 244

    17.5.1 Identifying Functional Groups 244

    17.5.2 Modeling the Function Structure 246

    17.5.3 Modeling the Functional Architecture 249

    17.6 SysML Modeling Tool Support 250

    17.6.1 Create Initial Functional Groups 251

    17.6.2 Changing and Adding Functional Groups 254

    17.6.3 Creating Functional Blocks and their Interfaces 254

    17.7 Mapping of a Functional Architecture to a Physical Architecture 254

    17.8 Experiences with the FAS Method 256

    17.9 FAS Workshops 258

    17.10 Quality Requirements and the Functional Architecture 259

    17.11 Functional Architectures and the Zigzag Pattern 262

    17.12 CPS-FAS for Cyber-physical Systems 263

    18 Product Lines and Variants 269

    18.1 Definitions Variant Modeling 270

    18.2 Variant Modeling with SysML 271

    18.3 Other Variant Modeling Techniques 276

    19 Architecture Frameworks 279

    19.1 Enterprise Architectures 280

    19.2 Characteristics of System of Systems (SoS) 282

    19.2.1 Emergence 283

    19.3 An Overview of Architecture Frameworks 285

    19.3.1 Zachman FrameworkTM 285

    19.3.2 The TOGAF® Standard 286

    19.3.3 Federal Enterprise Architecture Framework (FEAF) 288

    19.3.4 Department of Defense Architecture Framework (DoDAF) 289

    19.3.5 Ministry of Defense Architecture Framework (MODAF) 290

    19.3.6 NATO Architecture Framework (NAF) 291

    19.3.7 TRAK 292

    19.3.8 European Space Agency Architectural Framework (ESA-AF) 293

    19.3.9 OMG Unified Architecture Framework® (UAF®) 295

    19.4 System Architecture Framework (SAF) 296

    Together with Michael Leute 296

    19.4.1 SAF and Enterprise Frameworks 296

    19.4.2 SAF Ontology 298

    19.5 What to Do When We Come in Touch With Architecture Frameworks 298

    20 Cross-cutting Concerns 301

    20.1 The Game-Winning Nonfunctional Aspects 301

    20.2 Human System Interaction and Human Factors Engineering 303

    20.3 Risk Management 304

    20.4 Trade Studies 305

    20.5 Budgets 306

    21 Architecture Assessment 307

    22 Making It Work in the Organization 313

    22.1 Overview 313

    22.2 Organizational Structure for Systems Architecting 314

    22.3 Recipes from the Authors' Experience 318

    22.3.1 Be Humble 319

    22.3.2 Appraise the Stakeholders 319

    22.3.3 Care About Organizational Interfaces 319

    22.3.4 Show that it Was Always There 321

    22.3.5 Lead by Good Example 321

    22.3.6 Collect Success Stories and Share them When Appropriate 322

    22.3.7 Acknowledge that Infections Beat Dictated Rollout 323

    22.3.8 Assign the System Architect Role to Yourself 324

    22.3.9 Be a Leader 324

    23 Soft Skills 327

    23.1 It's All About Communication 328

    23.1.1 Losses in Communication 329

    23.1.2 The Anatomy of a Message 330

    23.1.3 Factors Influencing Communication 333

    23.1.3.1 The Language 333

    23.1.3.2 The Media Used 333

    23.1.3.3 Spatial Distance 333

    23.1.3.4 Various Connotations of Words 335

    23.1.4 The Usage of Communication Aids and Tools 335

    23.2 Personality Types 338

    23.2.1 Psychological Types by C. G. Jung 338

    23.2.2 The 4MAT System by Bernice McCarthy 340

    23.3 Team Dynamics 341

    23.4 Diversity and Psychological Safety 342

    23.4.1 Project Aristotle (Google) 342

    23.4.2 Elements of Psychological Safety 343

    23.5 Intercultural Collaboration Skills 344

    24 Outlook: The World After Artificial Intelligence 347

    Appendix A OMG Systems Modeling Language 349

    A.1 Architecture of the Language 350

    A.2 Diagram and Model 352

    A.3 Structure Diagrams 353

    A.3.1 Block Definition Diagram 354

    A.3.2 Internal Block Diagram 357

    A.3.3 Parametric Diagram 361

    A.3.4 Package Diagram 362

    A.4 Behavior Diagrams 363

    A.4.1 Use Case Diagram 364

    A.4.2 Activity Diagram 366

    A.4.3 State Machine Diagram 369

    A.4.4 Sequence Diagram 371

    A.5 Requirements Diagram 372

    A.6 Extension of SysML with Profiles 374

    A.7 Next-Generation Modeling Language SysML v2 376

    Appendix B The V-Model 381

    B.1 A Brief History of the V-Model or the Systems Engineering Vee 381

    B.2 A Handy Illustration but No Comprehensive Process Description 383

    B.3 Critical Considerations 385

    B.3.1 The V-Model as Process Description 386

    B.3.2 The V-Model Does Not Impose a Waterfall Process 386

    B.3.3 The V-Model Accommodates Iterations 387

    B.3.4 The V-Model Permits Incremental Development 387

    B.3.5 The V-Model and Concurrent Engineering 388

    B.3.6 The V-Model Accommodates Change 388

    B.3.7 The V-Model Permits Early Verification Planning 388

    B.3.8 The V-Model Shows Where to Prevent Dissatisfaction 388

    B.4 Reading Instruction for a Modern Systems Engineering Vee 389

    B.4.1 The Vertical Dimension 389

    B.4.2 The Horizontal Dimension 389

    B.4.3 The Left Side 389

    B.4.4 The Right Side 390

    B.4.5 The Levels 390

    B.4.6 Life Cycle Processes 390

    B.4.7 The Third Dimension 390

    Appendix C Glossary 391

    C.1 Heritage of the Term "Glossary" 391

    C.2 Terms with Specific Meaning 393

    References 399

    Index 417